|
|
@@ -1,302 +0,0 @@
|
|
|
-#include <bit>
|
|
|
-#include <cstddef>
|
|
|
-
|
|
|
-#include <assert.h>
|
|
|
-#include <stdint.h>
|
|
|
-
|
|
|
-#include <types/allocator.hpp>
|
|
|
-
|
|
|
-#include <kernel/async/lock.hpp>
|
|
|
-#include <kernel/mem/paging.hpp>
|
|
|
-#include <kernel/mem/slab.hpp>
|
|
|
-
|
|
|
-constexpr uintptr_t KERNEL_HEAP_START = 0xffff'ff81'8000'0000;
|
|
|
-constexpr uintptr_t KERNEL_HEAP_END = 0xffff'ffbf'ffff'ffff;
|
|
|
-constexpr uintptr_t KERNEL_HEAP_SIZE = KERNEL_HEAP_END - KERNEL_HEAP_START;
|
|
|
-
|
|
|
-namespace types::memory {
|
|
|
-
|
|
|
-struct mem_blk_flags {
|
|
|
- unsigned long is_free : 8;
|
|
|
- unsigned long has_next : 8;
|
|
|
-};
|
|
|
-
|
|
|
-struct mem_blk {
|
|
|
- std::size_t size;
|
|
|
- mem_blk_flags flags;
|
|
|
- // the first byte of the memory space
|
|
|
- // the minimal allocated space is 8 bytes
|
|
|
- std::byte data[];
|
|
|
-};
|
|
|
-
|
|
|
-constexpr std::byte* aspbyte(void* pblk) {
|
|
|
- return std::bit_cast<std::byte*>(pblk);
|
|
|
-}
|
|
|
-
|
|
|
-constexpr mem_blk* aspblk(void* pbyte) {
|
|
|
- return std::bit_cast<mem_blk*>(pbyte);
|
|
|
-}
|
|
|
-
|
|
|
-constexpr mem_blk* next(mem_blk* blk, std::size_t blk_size) {
|
|
|
- auto* p = aspbyte(blk);
|
|
|
- p += sizeof(mem_blk);
|
|
|
- p += blk_size;
|
|
|
- return aspblk(p);
|
|
|
-}
|
|
|
-
|
|
|
-// blk MUST be free
|
|
|
-constexpr void unite_afterwards(mem_blk* blk) {
|
|
|
- while (blk->flags.has_next) {
|
|
|
- auto* blk_next = next(blk, blk->size);
|
|
|
- if (!blk_next->flags.is_free)
|
|
|
- break;
|
|
|
- blk->size += sizeof(mem_blk) + blk_next->size;
|
|
|
- blk->flags.has_next = blk_next->flags.has_next;
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-// @param start_pos position where to start finding
|
|
|
-// @param size the size of the block we're looking for
|
|
|
-// @return found block if suitable block exists, if not, the last block
|
|
|
-constexpr mem_blk* find_blk(std::byte** p_start, std::size_t size) {
|
|
|
- mem_blk* start_pos = aspblk(*p_start);
|
|
|
- bool no_free_so_far = true;
|
|
|
-
|
|
|
- while (true) {
|
|
|
- if (start_pos->flags.is_free) {
|
|
|
- unite_afterwards(start_pos);
|
|
|
-
|
|
|
- no_free_so_far = false;
|
|
|
-
|
|
|
- if (start_pos->size >= size)
|
|
|
- break;
|
|
|
- }
|
|
|
-
|
|
|
- if (no_free_so_far)
|
|
|
- *p_start = aspbyte(start_pos);
|
|
|
-
|
|
|
- if (!start_pos->flags.has_next)
|
|
|
- break;
|
|
|
- start_pos = next(start_pos, start_pos->size);
|
|
|
- }
|
|
|
- return start_pos;
|
|
|
-}
|
|
|
-
|
|
|
-constexpr void split_block(mem_blk* blk, std::size_t this_size) {
|
|
|
- // block is too small to get split
|
|
|
- // that is, the block to be split should have enough room
|
|
|
- // for "this_size" bytes and also could contain a new block
|
|
|
- if (blk->size < this_size + sizeof(mem_blk) + 1024)
|
|
|
- return;
|
|
|
-
|
|
|
- mem_blk* blk_next = next(blk, this_size);
|
|
|
-
|
|
|
- blk_next->size = blk->size - this_size - sizeof(mem_blk);
|
|
|
-
|
|
|
- blk_next->flags.has_next = blk->flags.has_next;
|
|
|
- blk_next->flags.is_free = 1;
|
|
|
-
|
|
|
- blk->flags.has_next = 1;
|
|
|
- blk->size = this_size;
|
|
|
-}
|
|
|
-
|
|
|
-std::byte* brk_memory_allocator::brk(byte* addr) {
|
|
|
- if (addr >= p_limit)
|
|
|
- return nullptr;
|
|
|
-
|
|
|
- uintptr_t current_allocated = reinterpret_cast<uintptr_t>(p_allocated);
|
|
|
- uintptr_t new_brk = reinterpret_cast<uintptr_t>(addr);
|
|
|
-
|
|
|
- current_allocated &= ~(0x200000 - 1);
|
|
|
- new_brk &= ~(0x200000 - 1);
|
|
|
-
|
|
|
- using namespace kernel::mem::paging;
|
|
|
- while (current_allocated <= new_brk) {
|
|
|
- auto idx = idx_all(current_allocated);
|
|
|
- auto pdpt = KERNEL_PAGE_TABLE[std::get<1>(idx)].parse();
|
|
|
-
|
|
|
- auto pdpte = pdpt[std::get<2>(idx)];
|
|
|
- if (!pdpte.pfn())
|
|
|
- pdpte.set(PA_KERNEL_PAGE_TABLE, c_alloc_page_table());
|
|
|
-
|
|
|
- auto pde = pdpte.parse()[std::get<3>(idx)];
|
|
|
- assert(!(pde.attributes() & PA_P));
|
|
|
- pde.set(PA_KERNEL_DATA_HUGE, page_to_pfn(c_alloc_pages(9)) << 12);
|
|
|
-
|
|
|
- current_allocated += 0x200000;
|
|
|
- }
|
|
|
- p_allocated = (std::byte*)current_allocated;
|
|
|
-
|
|
|
- return p_break = addr;
|
|
|
-}
|
|
|
-
|
|
|
-std::byte* brk_memory_allocator::sbrk(size_type increment) {
|
|
|
- return brk(p_break + increment);
|
|
|
-}
|
|
|
-
|
|
|
-brk_memory_allocator::brk_memory_allocator(byte* start, size_type size)
|
|
|
- : p_start(start)
|
|
|
- , p_limit(start + size)
|
|
|
- , p_break(start)
|
|
|
- , p_allocated(start) {
|
|
|
- auto* p_blk = aspblk(brk(p_start));
|
|
|
- sbrk(sizeof(mem_blk) + 1024); // 1024 bytes (minimum size for a block)
|
|
|
-
|
|
|
- p_blk->size = 1024;
|
|
|
- p_blk->flags.has_next = 0;
|
|
|
- p_blk->flags.is_free = 1;
|
|
|
-}
|
|
|
-
|
|
|
-void* brk_memory_allocator::allocate(size_type size) {
|
|
|
- kernel::async::lock_guard_irq lck(mtx);
|
|
|
- // align to 1024 bytes boundary
|
|
|
- size = (size + 1024 - 1) & ~(1024 - 1);
|
|
|
-
|
|
|
- auto* block_allocated = find_blk(&p_start, size);
|
|
|
- if (!block_allocated->flags.has_next &&
|
|
|
- (!block_allocated->flags.is_free || block_allocated->size < size)) {
|
|
|
- // 'block_allocated' in the argument list is the pointer
|
|
|
- // pointing to the last block
|
|
|
-
|
|
|
- if (!sbrk(sizeof(mem_blk) + size))
|
|
|
- return nullptr;
|
|
|
-
|
|
|
- block_allocated->flags.has_next = 1;
|
|
|
-
|
|
|
- block_allocated = next(block_allocated, block_allocated->size);
|
|
|
-
|
|
|
- block_allocated->flags.has_next = 0;
|
|
|
- block_allocated->flags.is_free = 1;
|
|
|
- block_allocated->size = size;
|
|
|
- } else {
|
|
|
- split_block(block_allocated, size);
|
|
|
- }
|
|
|
-
|
|
|
- block_allocated->flags.is_free = 0;
|
|
|
-
|
|
|
- return block_allocated->data;
|
|
|
-}
|
|
|
-
|
|
|
-void brk_memory_allocator::deallocate(void* ptr) {
|
|
|
- kernel::async::lock_guard_irq lck(mtx);
|
|
|
- auto* blk = aspblk(aspbyte(ptr) - sizeof(mem_blk));
|
|
|
-
|
|
|
- blk->flags.is_free = 1;
|
|
|
-
|
|
|
- if (aspbyte(blk) < p_start)
|
|
|
- p_start = aspbyte(blk);
|
|
|
-
|
|
|
- // unite free blocks nearby
|
|
|
- unite_afterwards(blk);
|
|
|
-}
|
|
|
-
|
|
|
-bool brk_memory_allocator::allocated(void* ptr) const noexcept {
|
|
|
- return (void*)KERNEL_HEAP_START <= aspbyte(ptr) && aspbyte(ptr) < sbrk();
|
|
|
-}
|
|
|
-
|
|
|
-static brk_memory_allocator* k_alloc;
|
|
|
-
|
|
|
-} // namespace types::memory
|
|
|
-
|
|
|
-static kernel::mem::slab_cache caches[7];
|
|
|
-
|
|
|
-static constexpr int __cache_index(std::size_t size) {
|
|
|
- if (size <= 32)
|
|
|
- return 0;
|
|
|
- if (size <= 64)
|
|
|
- return 1;
|
|
|
- if (size <= 96)
|
|
|
- return 2;
|
|
|
- if (size <= 128)
|
|
|
- return 3;
|
|
|
- if (size <= 192)
|
|
|
- return 4;
|
|
|
- if (size <= 256)
|
|
|
- return 5;
|
|
|
- if (size <= 512)
|
|
|
- return 6;
|
|
|
- return -1;
|
|
|
-}
|
|
|
-
|
|
|
-extern "C" void init_allocator() {
|
|
|
- kernel::mem::init_slab_cache(caches + 0, 32);
|
|
|
- kernel::mem::init_slab_cache(caches + 1, 64);
|
|
|
- kernel::mem::init_slab_cache(caches + 2, 96);
|
|
|
- kernel::mem::init_slab_cache(caches + 3, 128);
|
|
|
- kernel::mem::init_slab_cache(caches + 4, 192);
|
|
|
- kernel::mem::init_slab_cache(caches + 5, 256);
|
|
|
- kernel::mem::init_slab_cache(caches + 6, 512);
|
|
|
-
|
|
|
- types::memory::k_alloc = new types::memory::brk_memory_allocator(
|
|
|
- (std::byte*)KERNEL_HEAP_START, KERNEL_HEAP_SIZE);
|
|
|
-}
|
|
|
-
|
|
|
-extern "C" void* _do_allocate(uintptr_t size) {
|
|
|
- int idx = __cache_index(size);
|
|
|
- void* ptr = nullptr;
|
|
|
- if (idx < 0)
|
|
|
- ptr = types::memory::k_alloc->allocate(size);
|
|
|
- else
|
|
|
- ptr = kernel::mem::slab_alloc(&caches[idx]);
|
|
|
-
|
|
|
- return ptr;
|
|
|
-}
|
|
|
-
|
|
|
-// return 0 if deallocate successfully
|
|
|
-// return -1 if ptr is nullptr
|
|
|
-// return -2 if size is not correct for slab allocated memory
|
|
|
-extern "C" int32_t _do_deallocate(void* ptr, uintptr_t size) {
|
|
|
- if (!ptr)
|
|
|
- return -1;
|
|
|
-
|
|
|
- if (types::memory::k_alloc->allocated(ptr)) {
|
|
|
- types::memory::k_alloc->deallocate(ptr);
|
|
|
- return 0;
|
|
|
- }
|
|
|
-
|
|
|
- int idx = __cache_index(size);
|
|
|
- if (idx < 0)
|
|
|
- return -2;
|
|
|
-
|
|
|
- kernel::mem::slab_free(ptr);
|
|
|
-
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-void* operator new(size_t size) {
|
|
|
- auto* ret = _do_allocate(size);
|
|
|
- assert(ret);
|
|
|
-
|
|
|
- return ret;
|
|
|
-}
|
|
|
-
|
|
|
-void operator delete(void* ptr) {
|
|
|
- if (!ptr)
|
|
|
- return;
|
|
|
-
|
|
|
- if (types::memory::k_alloc->allocated(ptr))
|
|
|
- types::memory::k_alloc->deallocate(ptr);
|
|
|
- else
|
|
|
- kernel::mem::slab_free(ptr);
|
|
|
-}
|
|
|
-
|
|
|
-void operator delete(void* ptr, std::size_t size) {
|
|
|
- if (!ptr)
|
|
|
- return;
|
|
|
-
|
|
|
- int ret = _do_deallocate(ptr, size);
|
|
|
-
|
|
|
- assert(ret == 0);
|
|
|
-}
|
|
|
-
|
|
|
-void* operator new[](size_t sz) {
|
|
|
- return ::operator new(sz);
|
|
|
-}
|
|
|
-
|
|
|
-void operator delete[](void* ptr) {
|
|
|
- ::operator delete(ptr);
|
|
|
-}
|
|
|
-
|
|
|
-void operator delete[](void* ptr, std::size_t size) {
|
|
|
- ::operator delete(ptr, size);
|
|
|
-}
|