|
@@ -2,18 +2,17 @@
|
|
|
#include <asm/port_io.h>
|
|
|
#include <asm/sys.h>
|
|
|
#include <kernel/errno.h>
|
|
|
-#include <kernel/mem.hpp>
|
|
|
+#include <kernel/mem.h>
|
|
|
+#include <kernel/mm.hpp>
|
|
|
#include <kernel/stdio.h>
|
|
|
#include <kernel/task.h>
|
|
|
#include <kernel/vga.h>
|
|
|
#include <kernel_main.h>
|
|
|
#include <types/bitmap.h>
|
|
|
-#include <types/list.h>
|
|
|
|
|
|
-// static variables
|
|
|
+// global objects
|
|
|
|
|
|
-struct mm kernel_mm;
|
|
|
-struct mm* kernel_mm_head;
|
|
|
+mm_list* kernel_mms;
|
|
|
|
|
|
// ---------------------
|
|
|
|
|
@@ -22,156 +21,203 @@ struct mm* kernel_mm_head;
|
|
|
#define EMPTY_PAGE_ADDR ((phys_ptr_t)0x5000)
|
|
|
#define EMPTY_PAGE_END ((phys_ptr_t)0x6000)
|
|
|
|
|
|
-// ---------------------
|
|
|
+#define IDENTICALLY_MAPPED_HEAP_SIZE ((size_t)0x400000)
|
|
|
|
|
|
-static void* p_start;
|
|
|
-static void* p_break;
|
|
|
+// ---------------------
|
|
|
|
|
|
static size_t mem_size;
|
|
|
static char mem_bitmap[1024 * 1024 / 8];
|
|
|
|
|
|
-static int32_t set_heap_start(void* start_addr)
|
|
|
-{
|
|
|
- p_start = start_addr;
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-static int32_t brk(void* addr)
|
|
|
-{
|
|
|
- if (addr >= KERNEL_HEAP_LIMIT) {
|
|
|
- return GB_FAILED;
|
|
|
+class brk_memory_allocator {
|
|
|
+public:
|
|
|
+ using byte = uint8_t;
|
|
|
+ using size_type = size_t;
|
|
|
+
|
|
|
+ struct mem_blk_flags {
|
|
|
+ uint8_t is_free;
|
|
|
+ uint8_t has_next;
|
|
|
+ uint8_t _unused2;
|
|
|
+ uint8_t _unused3;
|
|
|
+ };
|
|
|
+
|
|
|
+ struct mem_blk {
|
|
|
+ size_t size;
|
|
|
+ struct mem_blk_flags flags;
|
|
|
+ // the first byte of the memory space
|
|
|
+ // the minimal allocated space is 4 bytes
|
|
|
+ uint8_t data[4];
|
|
|
+ };
|
|
|
+
|
|
|
+private:
|
|
|
+ byte* p_start;
|
|
|
+ byte* p_break;
|
|
|
+ byte* p_limit;
|
|
|
+
|
|
|
+ brk_memory_allocator(void) = delete;
|
|
|
+ brk_memory_allocator(const brk_memory_allocator&) = delete;
|
|
|
+ brk_memory_allocator(brk_memory_allocator&&) = delete;
|
|
|
+
|
|
|
+ inline int brk(byte* addr)
|
|
|
+ {
|
|
|
+ if (addr >= p_limit)
|
|
|
+ return GB_FAILED;
|
|
|
+ p_break = addr;
|
|
|
+ return GB_OK;
|
|
|
}
|
|
|
- p_break = addr;
|
|
|
- return 0;
|
|
|
-}
|
|
|
|
|
|
-// sets errno when failed to increase heap pointer
|
|
|
-static void* sbrk(size_t increment)
|
|
|
-{
|
|
|
- if (brk((char*)p_break + increment) != 0) {
|
|
|
- errno = ENOMEM;
|
|
|
- return 0;
|
|
|
- } else {
|
|
|
- errno = 0;
|
|
|
- return p_break;
|
|
|
+ // sets errno
|
|
|
+ inline byte* sbrk(size_type increment)
|
|
|
+ {
|
|
|
+ if (brk(p_break + increment) != GB_OK) {
|
|
|
+ errno = ENOMEM;
|
|
|
+ return nullptr;
|
|
|
+ } else {
|
|
|
+ errno = 0;
|
|
|
+ return p_break;
|
|
|
+ }
|
|
|
}
|
|
|
-}
|
|
|
|
|
|
-int init_heap(void)
|
|
|
-{
|
|
|
- set_heap_start(KERNEL_HEAP_START);
|
|
|
-
|
|
|
- if (brk(KERNEL_HEAP_START) != 0) {
|
|
|
- return GB_FAILED;
|
|
|
+ inline mem_blk* _find_next_mem_blk(mem_blk* blk, size_type blk_size)
|
|
|
+ {
|
|
|
+ byte* p = (byte*)blk;
|
|
|
+ p += sizeof(mem_blk);
|
|
|
+ p += blk_size;
|
|
|
+ p -= (4 * sizeof(byte));
|
|
|
+ return (mem_blk*)p;
|
|
|
}
|
|
|
- struct mem_blk* p_blk = (struct mem_blk*)sbrk(0);
|
|
|
- p_blk->size = 4;
|
|
|
- p_blk->flags.has_next = 0;
|
|
|
- p_blk->flags.is_free = 1;
|
|
|
- return GB_OK;
|
|
|
-}
|
|
|
|
|
|
-static inline struct mem_blk* _find_next_mem_blk(struct mem_blk* blk, size_t blk_size)
|
|
|
-{
|
|
|
- char* p = (char*)blk;
|
|
|
- p += sizeof(struct mem_blk);
|
|
|
- p += blk_size;
|
|
|
- p -= (4 * sizeof(uint8_t));
|
|
|
- return (struct mem_blk*)p;
|
|
|
-}
|
|
|
-
|
|
|
-// @param start_pos position where to start finding
|
|
|
-// @param size the size of the block we're looking for
|
|
|
-// @return found block if suitable block exists, if not, the last block
|
|
|
-static struct mem_blk*
|
|
|
-find_blk(
|
|
|
- struct mem_blk* start_pos,
|
|
|
- size_t size)
|
|
|
-{
|
|
|
- while (1) {
|
|
|
- if (start_pos->flags.is_free && start_pos->size >= size) {
|
|
|
- errno = 0;
|
|
|
- return start_pos;
|
|
|
- } else {
|
|
|
- if (!start_pos->flags.has_next) {
|
|
|
- errno = ENOTFOUND;
|
|
|
+ // sets errno
|
|
|
+ // @param start_pos position where to start finding
|
|
|
+ // @param size the size of the block we're looking for
|
|
|
+ // @return found block if suitable block exists, if not, the last block
|
|
|
+ mem_blk* find_blk(mem_blk* start_pos, size_type size)
|
|
|
+ {
|
|
|
+ while (1) {
|
|
|
+ if (start_pos->flags.is_free && start_pos->size >= size) {
|
|
|
+ errno = 0;
|
|
|
return start_pos;
|
|
|
+ } else {
|
|
|
+ if (!start_pos->flags.has_next) {
|
|
|
+ errno = ENOTFOUND;
|
|
|
+ return start_pos;
|
|
|
+ }
|
|
|
+ start_pos = _find_next_mem_blk(start_pos, start_pos->size);
|
|
|
}
|
|
|
- start_pos = _find_next_mem_blk(start_pos, start_pos->size);
|
|
|
}
|
|
|
}
|
|
|
-}
|
|
|
|
|
|
-static struct mem_blk*
|
|
|
-allocate_new_block(
|
|
|
- struct mem_blk* blk_before,
|
|
|
- size_t size)
|
|
|
-{
|
|
|
- sbrk(sizeof(struct mem_blk) + size - 4 * sizeof(uint8_t));
|
|
|
- if (errno) {
|
|
|
- return 0;
|
|
|
+ // sets errno
|
|
|
+ mem_blk* allocate_new_block(mem_blk* blk_before, size_type size)
|
|
|
+ {
|
|
|
+ sbrk(sizeof(mem_blk) + size - 4 * sizeof(byte));
|
|
|
+ // preserves errno
|
|
|
+ if (errno) {
|
|
|
+ return nullptr;
|
|
|
+ }
|
|
|
+
|
|
|
+ mem_blk* blk = _find_next_mem_blk(blk_before, blk_before->size);
|
|
|
+
|
|
|
+ blk_before->flags.has_next = 1;
|
|
|
+
|
|
|
+ blk->flags.has_next = 0;
|
|
|
+ blk->flags.is_free = 1;
|
|
|
+ blk->size = size;
|
|
|
+
|
|
|
+ errno = 0;
|
|
|
+ return blk;
|
|
|
}
|
|
|
|
|
|
- struct mem_blk* blk = _find_next_mem_blk(blk_before, blk_before->size);
|
|
|
+ void split_block(mem_blk* blk, size_type this_size)
|
|
|
+ {
|
|
|
+ // block is too small to get split
|
|
|
+ if (blk->size < sizeof(mem_blk) + this_size) {
|
|
|
+ return;
|
|
|
+ }
|
|
|
|
|
|
- blk_before->flags.has_next = 1;
|
|
|
+ mem_blk* blk_next = _find_next_mem_blk(blk, this_size);
|
|
|
|
|
|
- blk->flags.has_next = 0;
|
|
|
- blk->flags.is_free = 1;
|
|
|
- blk->size = size;
|
|
|
+ blk_next->size = blk->size
|
|
|
+ - this_size
|
|
|
+ - sizeof(mem_blk)
|
|
|
+ + 4 * sizeof(byte);
|
|
|
|
|
|
- errno = 0;
|
|
|
- return blk;
|
|
|
-}
|
|
|
+ blk_next->flags.has_next = blk->flags.has_next;
|
|
|
+ blk_next->flags.is_free = 1;
|
|
|
|
|
|
-static void split_block(
|
|
|
- struct mem_blk* blk,
|
|
|
- size_t this_size)
|
|
|
-{
|
|
|
- // block is too small to get split
|
|
|
- if (blk->size < sizeof(struct mem_blk) + this_size) {
|
|
|
- return;
|
|
|
+ blk->flags.has_next = 1;
|
|
|
+ blk->size = this_size;
|
|
|
}
|
|
|
|
|
|
- struct mem_blk* blk_next = _find_next_mem_blk(blk, this_size);
|
|
|
+public:
|
|
|
+ brk_memory_allocator(void* start, size_type limit)
|
|
|
+ : p_start((byte*)start)
|
|
|
+ , p_limit(p_start + limit)
|
|
|
+ {
|
|
|
+ brk(p_start);
|
|
|
+ mem_blk* p_blk = (mem_blk*)sbrk(0);
|
|
|
+ p_blk->size = 4;
|
|
|
+ p_blk->flags.has_next = 0;
|
|
|
+ p_blk->flags.is_free = 1;
|
|
|
+ }
|
|
|
|
|
|
- blk_next->size = blk->size
|
|
|
- - this_size
|
|
|
- - sizeof(struct mem_blk)
|
|
|
- + 4 * sizeof(uint8_t);
|
|
|
+ // sets errno
|
|
|
+ void* alloc(size_type size)
|
|
|
+ {
|
|
|
+ struct mem_blk* block_allocated;
|
|
|
+
|
|
|
+ block_allocated = find_blk((mem_blk*)p_start, size);
|
|
|
+ if (errno == ENOTFOUND) {
|
|
|
+ // 'block_allocated' in the argument list is the pointer
|
|
|
+ // pointing to the last block
|
|
|
+ block_allocated = allocate_new_block(block_allocated, size);
|
|
|
+ if (errno) {
|
|
|
+ // preserves errno
|
|
|
+ return nullptr;
|
|
|
+ }
|
|
|
+ } else {
|
|
|
+ split_block(block_allocated, size);
|
|
|
+ }
|
|
|
|
|
|
- blk_next->flags.has_next = blk->flags.has_next;
|
|
|
- blk_next->flags.is_free = 1;
|
|
|
+ errno = 0;
|
|
|
+ block_allocated->flags.is_free = 0;
|
|
|
+ return block_allocated->data;
|
|
|
+ }
|
|
|
|
|
|
- blk->flags.has_next = 1;
|
|
|
- blk->size = this_size;
|
|
|
-}
|
|
|
+ void free(void* ptr)
|
|
|
+ {
|
|
|
+ mem_blk* blk = (mem_blk*)((byte*)ptr - (sizeof(mem_blk_flags) + sizeof(size_t)));
|
|
|
+ blk->flags.is_free = 1;
|
|
|
+ // TODO: fusion free blocks nearby
|
|
|
+ }
|
|
|
+};
|
|
|
+
|
|
|
+static brk_memory_allocator* kernel_heap_allocator;
|
|
|
+static brk_memory_allocator
|
|
|
+ kernel_ident_mapped_allocator((void*)bss_section_end_addr,
|
|
|
+ IDENTICALLY_MAPPED_HEAP_SIZE);
|
|
|
|
|
|
void* k_malloc(size_t size)
|
|
|
{
|
|
|
- struct mem_blk* block_allocated;
|
|
|
-
|
|
|
- block_allocated = find_blk((struct mem_blk*)p_start, size);
|
|
|
- if (errno == ENOTFOUND) {
|
|
|
- // 'block_allocated' in the argument list is the pointer
|
|
|
- // pointing to the last block
|
|
|
- block_allocated = allocate_new_block(block_allocated, size);
|
|
|
- // no need to check errno and return value
|
|
|
- // preserve these for the caller
|
|
|
- } else {
|
|
|
- split_block(block_allocated, size);
|
|
|
- }
|
|
|
-
|
|
|
- block_allocated->flags.is_free = 0;
|
|
|
- return block_allocated->data;
|
|
|
+ return kernel_heap_allocator->alloc(size);
|
|
|
}
|
|
|
|
|
|
void k_free(void* ptr)
|
|
|
{
|
|
|
- ptr = (void*)((char*)ptr - (sizeof(struct mem_blk_flags) + sizeof(size_t)));
|
|
|
- struct mem_blk* blk = (struct mem_blk*)ptr;
|
|
|
- blk->flags.is_free = 1;
|
|
|
- // TODO: fusion free blocks nearby
|
|
|
+ kernel_heap_allocator->free(ptr);
|
|
|
+}
|
|
|
+
|
|
|
+void* ki_malloc(size_t size)
|
|
|
+{
|
|
|
+ void* ptr = kernel_ident_mapped_allocator.alloc(size);
|
|
|
+ if (!ptr) {
|
|
|
+ MAKE_BREAK_POINT();
|
|
|
+ }
|
|
|
+ return ptr;
|
|
|
+}
|
|
|
+
|
|
|
+void ki_free(void* ptr)
|
|
|
+{
|
|
|
+ kernel_ident_mapped_allocator.free(ptr);
|
|
|
}
|
|
|
|
|
|
void* p_ptr_to_v_ptr(phys_ptr_t p_ptr)
|
|
@@ -186,28 +232,26 @@ void* p_ptr_to_v_ptr(phys_ptr_t p_ptr)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
-phys_ptr_t l_ptr_to_p_ptr(struct mm* mm, linr_ptr_t v_ptr)
|
|
|
+phys_ptr_t l_ptr_to_p_ptr(const mm_list* mms, linr_ptr_t v_ptr)
|
|
|
{
|
|
|
- while (mm != NULL) {
|
|
|
- if (v_ptr < mm->start || v_ptr >= mm->start + mm->len * 4096) {
|
|
|
- mm = mm->next;
|
|
|
+ for (const mm& item : *mms) {
|
|
|
+ if (v_ptr < item.start || v_ptr >= item.start + item.pgs->size() * PAGE_SIZE)
|
|
|
continue;
|
|
|
- }
|
|
|
- size_t offset = (size_t)(v_ptr - mm->start);
|
|
|
- LIST_LIKE_AT(struct page, mm->pgs, offset / PAGE_SIZE, result);
|
|
|
- return page_to_phys_addr(result->phys_page_id) + (offset % 4096);
|
|
|
+ size_t offset = (size_t)(v_ptr - item.start);
|
|
|
+ const page& p = item.pgs->at(offset / PAGE_SIZE);
|
|
|
+ return page_to_phys_addr(p.phys_page_id) + (offset % PAGE_SIZE);
|
|
|
}
|
|
|
|
|
|
// TODO: handle error
|
|
|
return 0xffffffff;
|
|
|
}
|
|
|
|
|
|
-phys_ptr_t v_ptr_to_p_ptr(void* v_ptr)
|
|
|
+phys_ptr_t v_ptr_to_p_ptr(const void* v_ptr)
|
|
|
{
|
|
|
if (v_ptr < KERNEL_IDENTICALLY_MAPPED_AREA_LIMIT) {
|
|
|
return (phys_ptr_t)v_ptr;
|
|
|
}
|
|
|
- return l_ptr_to_p_ptr(kernel_mm_head, (linr_ptr_t)v_ptr);
|
|
|
+ return l_ptr_to_p_ptr(kernel_mms, (linr_ptr_t)v_ptr);
|
|
|
}
|
|
|
|
|
|
static inline void mark_page(page_t n)
|
|
@@ -262,13 +306,11 @@ page_t alloc_raw_page(void)
|
|
|
return 0xffffffff;
|
|
|
}
|
|
|
|
|
|
-struct page* allocate_page(void)
|
|
|
+struct page allocate_page(void)
|
|
|
{
|
|
|
- // TODO: allocate memory on identically mapped area
|
|
|
- struct page* p = (struct page*)k_malloc(sizeof(struct page));
|
|
|
- memset(p, 0x00, sizeof(struct page));
|
|
|
- p->phys_page_id = alloc_raw_page();
|
|
|
- p->ref_count = (size_t*)k_malloc(sizeof(size_t));
|
|
|
+ struct page p { };
|
|
|
+ p.phys_page_id = alloc_raw_page();
|
|
|
+ p.ref_count = types::kernel_ident_allocator_new<size_t>(0);
|
|
|
return p;
|
|
|
}
|
|
|
|
|
@@ -290,6 +332,8 @@ static inline void init_mem_layout(void)
|
|
|
mark_addr_range(0x80000, 0xfffff);
|
|
|
// mark kernel
|
|
|
mark_addr_len(0x00100000, kernel_size);
|
|
|
+ // mark identically mapped heap
|
|
|
+ mark_addr_len(bss_section_end_addr, IDENTICALLY_MAPPED_HEAP_SIZE);
|
|
|
|
|
|
if (e820_mem_map_entry_size == 20) {
|
|
|
struct e820_mem_map_entry_20* entry = (struct e820_mem_map_entry_20*)e820_mem_map;
|
|
@@ -308,35 +352,25 @@ static inline void init_mem_layout(void)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
-int is_l_ptr_valid(struct mm* mm_area, linr_ptr_t l_ptr)
|
|
|
+int is_l_ptr_valid(const mm_list* mms, linr_ptr_t l_ptr)
|
|
|
{
|
|
|
- while (mm_area != NULL) {
|
|
|
- if (l_ptr >= mm_area->start && l_ptr < mm_area->start + mm_area->len * PAGE_SIZE) {
|
|
|
+ for (const auto& item : *mms)
|
|
|
+ if (l_ptr >= item.start && l_ptr < item.start + item.pgs->size() * PAGE_SIZE)
|
|
|
return GB_OK;
|
|
|
- }
|
|
|
- mm_area = mm_area->next;
|
|
|
- }
|
|
|
return GB_FAILED;
|
|
|
}
|
|
|
|
|
|
-struct page* find_page_by_l_ptr(struct mm* mm, linr_ptr_t l_ptr)
|
|
|
+struct page* find_page_by_l_ptr(const mm_list* mms, linr_ptr_t l_ptr)
|
|
|
{
|
|
|
- if (mm == kernel_mm_head && l_ptr < (linr_ptr_t)KERNEL_IDENTICALLY_MAPPED_AREA_LIMIT) {
|
|
|
- // TODO: make mm for identically mapped area
|
|
|
- MAKE_BREAK_POINT();
|
|
|
- return (struct page*)0xffffffff;
|
|
|
- }
|
|
|
- while (mm != NULL) {
|
|
|
- if (l_ptr >= mm->start && l_ptr < mm->start + mm->len * 4096) {
|
|
|
- size_t offset = (size_t)(l_ptr - mm->start);
|
|
|
- LIST_LIKE_AT(struct page, mm->pgs, offset / PAGE_SIZE, result);
|
|
|
- return result;
|
|
|
+ for (const mm& item : *mms) {
|
|
|
+ if (l_ptr >= item.start && l_ptr < item.start + item.pgs->size() * PAGE_SIZE) {
|
|
|
+ size_t offset = (size_t)(l_ptr - item.start);
|
|
|
+ return &item.pgs->at(offset / PAGE_SIZE);
|
|
|
}
|
|
|
- mm = mm->next;
|
|
|
}
|
|
|
|
|
|
// TODO: error handling
|
|
|
- return NULL;
|
|
|
+ return nullptr;
|
|
|
}
|
|
|
|
|
|
static inline void map_raw_page_to_pte(
|
|
@@ -352,13 +386,16 @@ static inline void map_raw_page_to_pte(
|
|
|
pte->in.page = page;
|
|
|
}
|
|
|
|
|
|
-static void _map_raw_page_to_addr(
|
|
|
+// map page to the end of mm_area in pd
|
|
|
+int k_map(
|
|
|
struct mm* mm_area,
|
|
|
- page_t page,
|
|
|
- int rw,
|
|
|
- int priv)
|
|
|
+ const struct page* page,
|
|
|
+ int read,
|
|
|
+ int write,
|
|
|
+ int priv,
|
|
|
+ int cow)
|
|
|
{
|
|
|
- linr_ptr_t addr = (linr_ptr_t)mm_area->start + mm_area->len * 4096;
|
|
|
+ linr_ptr_t addr = (linr_ptr_t)mm_area->start + mm_area->pgs->size() * PAGE_SIZE;
|
|
|
page_directory_entry* pde = mm_area->pd + linr_addr_to_pd_i(addr);
|
|
|
// page table not exist
|
|
|
if (!pde->in.p) {
|
|
@@ -374,64 +411,10 @@ static void _map_raw_page_to_addr(
|
|
|
// map the page in the page table
|
|
|
page_table_entry* pte = (page_table_entry*)p_ptr_to_v_ptr(page_to_phys_addr(pde->in.pt_page));
|
|
|
pte += linr_addr_to_pt_i(addr);
|
|
|
- map_raw_page_to_pte(pte, page, rw, priv);
|
|
|
-}
|
|
|
+ map_raw_page_to_pte(pte, page->phys_page_id, (write && !cow), priv);
|
|
|
|
|
|
-// map page to the end of mm_area in pd
|
|
|
-int k_map(
|
|
|
- struct mm* mm_area,
|
|
|
- struct page* page,
|
|
|
- int read,
|
|
|
- int write,
|
|
|
- int priv,
|
|
|
- int cow)
|
|
|
-{
|
|
|
- struct page* p_page_end = mm_area->pgs;
|
|
|
- while (p_page_end != NULL && p_page_end->next != NULL)
|
|
|
- p_page_end = p_page_end->next;
|
|
|
-
|
|
|
- if (cow) {
|
|
|
- // find its ancestor
|
|
|
- while (page->attr.cow)
|
|
|
- page = page->next;
|
|
|
-
|
|
|
- // create a new page node
|
|
|
- struct page* new_page = (struct page*)k_malloc(sizeof(struct page));
|
|
|
-
|
|
|
- new_page->attr.read = (read == 1);
|
|
|
- new_page->attr.write = (write == 1);
|
|
|
- new_page->attr.system = (priv == 1);
|
|
|
- new_page->attr.cow = 1;
|
|
|
- // TODO: move *next out of struct page
|
|
|
- new_page->next = NULL;
|
|
|
-
|
|
|
- new_page->phys_page_id = page->phys_page_id;
|
|
|
- new_page->ref_count = page->ref_count;
|
|
|
-
|
|
|
- if (p_page_end != NULL)
|
|
|
- p_page_end->next = new_page;
|
|
|
- else
|
|
|
- mm_area->pgs = new_page;
|
|
|
- } else {
|
|
|
- page->attr.read = (read == 1);
|
|
|
- page->attr.write = (write == 1);
|
|
|
- page->attr.system = (priv == 1);
|
|
|
- page->attr.cow = 0;
|
|
|
- // TODO: move *next out of struct page
|
|
|
- page->next = NULL;
|
|
|
-
|
|
|
- if (p_page_end != NULL)
|
|
|
- p_page_end->next = page;
|
|
|
- else
|
|
|
- mm_area->pgs = page;
|
|
|
- }
|
|
|
- _map_raw_page_to_addr(
|
|
|
- mm_area,
|
|
|
- page->phys_page_id,
|
|
|
- (write && !cow),
|
|
|
- priv);
|
|
|
-
|
|
|
- ++mm_area->len;
|
|
|
+ mm_area->pgs->push_back(*page);
|
|
|
+ mm_area->pgs->back()->attr.cow = cow;
|
|
|
++*page->ref_count;
|
|
|
return GB_OK;
|
|
|
}
|
|
@@ -473,9 +456,7 @@ static inline void init_paging_map_low_mem_identically(void)
|
|
|
}
|
|
|
}
|
|
|
|
|
|
-static struct page empty_page;
|
|
|
-static struct page heap_first_page;
|
|
|
-static size_t heap_first_page_ref_count;
|
|
|
+static page empty_page;
|
|
|
|
|
|
void init_mem(void)
|
|
|
{
|
|
@@ -484,46 +465,43 @@ void init_mem(void)
|
|
|
// map the 16MiB-768MiB identically
|
|
|
init_paging_map_low_mem_identically();
|
|
|
|
|
|
- kernel_mm_head = &kernel_mm;
|
|
|
-
|
|
|
- kernel_mm.attr.read = 1;
|
|
|
- kernel_mm.attr.write = 1;
|
|
|
- kernel_mm.attr.system = 1;
|
|
|
- kernel_mm.len = 0;
|
|
|
- kernel_mm.next = NULL;
|
|
|
- kernel_mm.pd = KERNEL_PAGE_DIRECTORY_ADDR;
|
|
|
- kernel_mm.pgs = NULL;
|
|
|
- kernel_mm.start = (linr_ptr_t)KERNEL_HEAP_START;
|
|
|
-
|
|
|
- heap_first_page.attr.cow = 0;
|
|
|
- heap_first_page.attr.read = 1;
|
|
|
- heap_first_page.attr.write = 1;
|
|
|
- heap_first_page.attr.system = 1;
|
|
|
- heap_first_page.next = NULL;
|
|
|
- heap_first_page.phys_page_id = alloc_raw_page();
|
|
|
- heap_first_page.ref_count = &heap_first_page_ref_count;
|
|
|
-
|
|
|
- *heap_first_page.ref_count = 0;
|
|
|
-
|
|
|
- k_map(kernel_mm_head, &heap_first_page, 1, 1, 1, 0);
|
|
|
-
|
|
|
- init_heap();
|
|
|
+ kernel_mms = types::kernel_ident_allocator_new<mm_list>();
|
|
|
+ kernel_mms->push_back(mm {
|
|
|
+ .start = (linr_ptr_t)KERNEL_HEAP_START,
|
|
|
+ .attr = {
|
|
|
+ .read = 1,
|
|
|
+ .write = 1,
|
|
|
+ .system = 1,
|
|
|
+ },
|
|
|
+ .pgs = types::kernel_ident_allocator_new<page_arr>(),
|
|
|
+ .pd = KERNEL_PAGE_DIRECTORY_ADDR,
|
|
|
+ });
|
|
|
+
|
|
|
+ page heap_first_page {
|
|
|
+ .phys_page_id = alloc_raw_page(),
|
|
|
+ .ref_count = types::kernel_ident_allocator_new<size_t>(0),
|
|
|
+ .attr = {
|
|
|
+ .cow = 0,
|
|
|
+ },
|
|
|
+ };
|
|
|
+
|
|
|
+ mm* heap_mm = kernel_mms->begin().ptr();
|
|
|
+
|
|
|
+ k_map(heap_mm, &heap_first_page, 1, 1, 1, 0);
|
|
|
+ memset(KERNEL_HEAP_START, 0x00, PAGE_SIZE);
|
|
|
+ kernel_heap_allocator = types::kernel_ident_allocator_new<brk_memory_allocator>(KERNEL_HEAP_START,
|
|
|
+ (uint32_t)KERNEL_HEAP_LIMIT - (uint32_t)KERNEL_HEAP_START);
|
|
|
|
|
|
// create empty_page struct
|
|
|
empty_page.attr.cow = 0;
|
|
|
- empty_page.attr.read = 1;
|
|
|
- empty_page.attr.write = 0;
|
|
|
- empty_page.attr.system = 0;
|
|
|
- empty_page.next = NULL;
|
|
|
empty_page.phys_page_id = phys_addr_to_page(EMPTY_PAGE_ADDR);
|
|
|
- empty_page.ref_count = (size_t*)k_malloc(sizeof(size_t));
|
|
|
- *empty_page.ref_count = 1;
|
|
|
+ empty_page.ref_count = types::kernel_ident_allocator_new<size_t>(1);
|
|
|
|
|
|
// TODO: improve the algorithm SO FREAKING SLOW
|
|
|
// while (kernel_mm_head->len < 256 * 1024 * 1024 / PAGE_SIZE) {
|
|
|
- while (kernel_mm_head->len < 16 * 1024 * 1024 / PAGE_SIZE) {
|
|
|
+ while (heap_mm->pgs->size() < 256 * 1024 * 1024 / PAGE_SIZE) {
|
|
|
k_map(
|
|
|
- kernel_mm_head, &empty_page,
|
|
|
+ heap_mm, &empty_page,
|
|
|
1, 1, 1, 1);
|
|
|
}
|
|
|
}
|