#pragma once #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include class process; namespace kernel::tasks { struct thread; } // namespace kernel::tasks class proclist; class readyqueue; inline process* volatile current_process; inline kernel::tasks::thread* volatile current_thread; inline proclist* procs; inline readyqueue* readythds; inline tss32_t tss; struct process_attr { uint16_t system : 1; uint16_t zombie : 1 = 0; }; struct thread_attr { uint32_t system : 1; uint32_t ready : 1; uint32_t wait : 1; }; namespace kernel::tasks { using tid_t = uint32_t; struct thread { private: void alloc_kstack(void); void free_kstack(uint32_t p); public: uint32_t* esp; uint32_t pkstack; pid_t owner; thread_attr attr; int* __user set_child_tid {}; int* __user clear_child_tid {}; types::string<> name {}; explicit inline thread(types::string<> name, pid_t owner) : owner { owner } , attr { .system = 1, .ready = 1, .wait = 0, } , name { name } { alloc_kstack(); } inline thread(const thread& val, pid_t owner) : owner { owner }, attr { val.attr }, name { val.name } { alloc_kstack(); } constexpr thread(thread&& val) = default; inline ~thread() { free_kstack(pkstack); } constexpr tid_t tid() const { return pkstack; } constexpr bool operator==(const thread& rhs) const { return pkstack == rhs.pkstack; } constexpr bool operator<(const thread& rhs) const { return pkstack < rhs.pkstack; } }; } class filearr { public: using array_type = std::map>; private: array_type arr; std::priority_queue, std::greater> _fds; int _greatest_fd; private: constexpr int next_fd() { if (_fds.empty()) return _greatest_fd++; int retval = _fds.top(); _fds.pop(); return retval; } public: constexpr filearr(const filearr&) = delete; constexpr filearr& operator=(const filearr&) = delete; constexpr filearr& operator=(filearr&&) = delete; constexpr filearr(void) = default; constexpr filearr(filearr&& val) = default; constexpr int dup(int old_fd) { return dup2(old_fd, next_fd()); } // TODO: the third parameter should be int flags // determining whether the fd should be closed // after exec() (FD_CLOEXEC) constexpr int dup2(int old_fd, int new_fd) { close(new_fd); auto iter = arr.find(old_fd); if (!iter) return -EBADF; this->arr.emplace(new_fd, iter->second); return new_fd; } constexpr void dup_all(const filearr& orig) { this->_fds = orig._fds; this->_greatest_fd = orig._greatest_fd; for (auto [ fd, fp ] : orig.arr) this->arr.emplace(fd, fp); } constexpr fs::file* operator[](int i) const { auto iter = arr.find(i); if (!iter) return nullptr; return iter->second.get(); } int pipe(int pipefd[2]) { std::shared_ptr ppipe { new fs::pipe }; bool inserted = false; int fd = next_fd(); std::tie(std::ignore, inserted) = arr.emplace(fd, std::shared_ptr { new fs::fifo_file(nullptr, { .read = 1, .write = 0, .close_on_exec = 0, }, ppipe), }); assert(inserted); // TODO: use copy_to_user() pipefd[0] = fd; fd = next_fd(); std::tie(std::ignore, inserted) = arr.emplace(fd, std::shared_ptr { new fs::fifo_file(nullptr, { .read = 0, .write = 1, .close_on_exec = 0, }, ppipe), }); assert(inserted); // TODO: use copy_to_user() pipefd[1] = fd; return 0; } int open(const process& current, const types::path& filepath, int flags, mode_t mode); constexpr void close(int fd) { auto iter = arr.find(fd); if (!iter) return; iter->second->close(); _fds.push(fd); arr.erase(iter); } constexpr void onexec() { for (auto&& [ fd, fp ] : arr) { if (fp->flags.close_on_exec) close(fd); } } constexpr void close_all(void) { for (auto&& [ fd, fp ] : arr) { fp->close(); _fds.push(fd); } arr.clear(); } constexpr ~filearr() { close_all(); } }; class process { public: struct wait_obj { pid_t pid; int code; }; public: kernel::memory::mm_list mms {}; std::set thds; kernel::cond_var cv_wait; std::list waitlist; process_attr attr {}; filearr files; types::path pwd; kernel::signal_list signals; pid_t pid {}; pid_t ppid {}; pid_t pgid {}; pid_t sid {}; tty* control_tty {}; fs::vfs::dentry* root { fs::fs_root }; std::set children; public: process(const process&) = delete; explicit process(const process& parent, pid_t pid); // this function is used for system initialization // DO NOT use this after the system is on explicit process(pid_t pid, pid_t ppid); constexpr bool is_system(void) const { return attr.system; } constexpr bool is_zombie(void) const { return attr.zombie; } }; class proclist final { public: using list_type = std::map; using iterator = list_type::iterator; using const_iterator = list_type::const_iterator; private: list_type m_procs; pid_t m_nextpid = 1; constexpr pid_t next_pid() { return m_nextpid++; } public: process& emplace(pid_t ppid) { pid_t pid = next_pid(); auto [ iter, inserted ] = m_procs.try_emplace(pid, pid, ppid); assert(inserted); if (try_find(ppid)) { bool success = false; std::tie(std::ignore, success) = find(ppid).children.insert(pid); assert(success); } return iter->second; } process& copy_from(process& proc) { pid_t pid = next_pid(); auto [ iter, inserted ] = m_procs.try_emplace(pid, proc, pid); assert(inserted); proc.children.insert(pid); return iter->second; } constexpr void remove(pid_t pid) { make_children_orphans(pid); auto proc_iter = m_procs.find(pid); auto ppid = proc_iter->second.ppid; find(ppid).children.erase(pid); m_procs.erase(proc_iter); } constexpr bool try_find(pid_t pid) const { return m_procs.find(pid); } // if process doesn't exist, the behavior is undefined constexpr process& find(pid_t pid) { auto iter = m_procs.find(pid); assert(iter); return iter->second; } constexpr bool has_child(pid_t pid) { auto& proc = find(pid); return !proc.children.empty(); } constexpr void make_children_orphans(pid_t pid) { auto& children = find(pid).children; auto& init_children = find(1).children; for (auto item : children) { init_children.insert(item); find(item).ppid = 1; } children.clear(); } // the process MUST exist, or the behavior is undefined void send_signal(pid_t pid, kernel::sig_t signal) { auto& proc = this->find(pid); proc.signals.set(signal); } void send_signal_grp(pid_t pgid, kernel::sig_t signal) { for (auto& [ pid, proc ] : m_procs) { if (proc.pgid == pgid) proc.signals.set(signal); } } void kill(pid_t pid, int exit_code); }; // TODO: lock and unlock class readyqueue final { public: using thread = kernel::tasks::thread; using list_type = std::list; private: list_type m_thds; private: readyqueue(const readyqueue&) = delete; readyqueue(readyqueue&&) = delete; readyqueue& operator=(const readyqueue&) = delete; readyqueue& operator=(readyqueue&&) = delete; ~readyqueue() = delete; public: constexpr explicit readyqueue(void) = default; constexpr void push(thread* thd) { m_thds.push_back(thd); } constexpr thread* pop(void) { m_thds.remove_if([](thread* item) { return !item->attr.ready; }); auto* retval = m_thds.front(); m_thds.pop_front(); return retval; } constexpr thread* query(void) { auto* thd = this->pop(); this->push(thd); return thd; } constexpr void remove_all(thread* thd) { m_thds.remove(thd); } }; void NORETURN init_scheduler(void); /// @return true if returned normally, false if being interrupted bool schedule(void); void NORETURN schedule_noreturn(void); constexpr uint32_t push_stack(uint32_t** stack, uint32_t val) { --*stack; **stack = val; return val; } void k_new_thread(void (*func)(void*), void* data); void NORETURN freeze(void); void NORETURN kill_current(int exit_code); void check_signal(void);