#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include process::process(const process& parent, pid_t pid) : mms{parent.mms} , attr{parent.attr} , files{parent.files.copy()} , umask{parent.umask} , pid{pid} , ppid{parent.pid} , pgid{parent.pgid} , sid{parent.sid} , control_tty{parent.control_tty} { if (parent.cwd) cwd = fs::d_get(parent.cwd); if (parent.fs_context.root) fs_context.root = fs::d_get(parent.fs_context.root); } process::process(pid_t pid, pid_t ppid) : attr{.system = true}, files{&fs_context}, pid{pid}, ppid{ppid} { bool inserted; std::tie(std::ignore, inserted) = thds.emplace("", pid); assert(inserted); } using signo_type = kernel::signal_list::signo_type; void process::send_signal(signo_type signal) { for (auto& thd : thds) thd.send_signal(signal); } void kernel_threadd_main(void) { kmsg("[kernel] kthread daemon started"); // TODO: create new kthread for (;;) asm volatile("hlt"); } static inline void __spawn(kernel::task::thread& thd, uintptr_t entry) { auto prev_sp = thd.kstack.sp; // return(start) address thd.kstack.pushq(entry); thd.kstack.pushq(0x200); // flags thd.kstack.pushq(0); // r15 thd.kstack.pushq(0); // r14 thd.kstack.pushq(0); // r13 thd.kstack.pushq(0); // r12 thd.kstack.pushq(0); // rbp thd.kstack.pushq(0); // rbx thd.kstack.pushq(0); // 0 for alignment thd.kstack.pushq(prev_sp); // previous sp } SECTION(".text.kinit") proclist::proclist() { // init process has no parent auto& init = real_emplace(1, 0); assert(init.pid == 1 && init.ppid == 0); auto thd = init.thds.begin(); thd->name.assign("[kernel init]"); current_process = &init; current_thread = &thd; kernel::task::dispatcher::enqueue(current_thread); current_thread->kstack.load_interrupt_stack(); current_process->mms.switch_pd(); if (1) { // pid 0 is kernel thread daemon auto& proc = real_emplace(0, 0); assert(proc.pid == 0 && proc.ppid == 0); // create thread auto thd = proc.thds.begin(); thd->name.assign("[kernel thread daemon]"); __spawn(*thd, (uintptr_t)kernel_threadd_main); kernel::task::dispatcher::setup_idle(&thd); } } process& proclist::real_emplace(pid_t pid, pid_t ppid) { auto [iter, inserted] = m_procs.try_emplace(pid, pid, ppid); assert(inserted); return iter->second; } void proclist::kill(pid_t pid, int exit_code) { auto& proc = this->find(pid); // init should never exit if (proc.ppid == 0) { kmsg("kernel panic: init exited!"); freeze(); } kernel::async::preempt_disable(); // put all threads into sleep for (auto& thd : proc.thds) thd.set_attr(kernel::task::thread::ZOMBIE); // TODO: CHANGE THIS // files should only be closed when this is the last thread // // write back mmap'ped files and close them proc.files.clear(); // unmap all user memory areas proc.mms.clear(); // free cwd and fs_context dentry proc.cwd.reset(); proc.fs_context.root.reset(); // make child processes orphans (children of init) this->make_children_orphans(pid); proc.attr.zombie = 1; // notify parent process and init auto& parent = this->find(proc.ppid); auto& init = this->find(1); using kernel::async::lock_guard; bool flag = false; if (1) { lock_guard lck(init.mtx_waitprocs); if (1) { lock_guard lck(proc.mtx_waitprocs); for (const auto& item : proc.waitprocs) { if (WIFSTOPPED(item.code) || WIFCONTINUED(item.code)) continue; init.waitprocs.push_back(item); flag = true; } proc.waitprocs.clear(); } } if (flag) init.waitlist.notify_all(); if (1) { lock_guard lck(parent.mtx_waitprocs); parent.waitprocs.push_back({pid, exit_code}); } parent.waitlist.notify_all(); kernel::async::preempt_enable(); } static void release_kinit() { // free .kinit using namespace kernel::mem::paging; extern uintptr_t volatile KINIT_START_ADDR, KINIT_END_ADDR, KINIT_PAGES; std::size_t pages = KINIT_PAGES; auto range = vaddr_range{KERNEL_PAGE_TABLE_ADDR, KINIT_START_ADDR, KINIT_END_ADDR, true}; for (auto pte : range) pte.clear(); create_zone(0x2000, 0x2000 + 0x1000 * pages); } void NORETURN _kernel_init(kernel::mem::paging::pfn_t kernel_stack_pfn) { kernel::mem::paging::free_pages(kernel_stack_pfn, 9); release_kinit(); kernel::kmod::load_internal_modules(); asm volatile("sti"); // mount rootfs fs::vfs* rootfs; if (1) { int ret; std::tie(rootfs, ret) = fs::vfs::create("none", "tmpfs", MS_NOATIME, nullptr); assert(ret == 0); } current_process->fs_context.root = d_get(rootfs->root()); current_process->cwd = d_get(rootfs->root()); // ------------------------------------------ // interrupt enabled // ------------------------------------------ const auto& context = current_process->fs_context; // mount fat32 /mnt directory // TODO: parse kernel parameters if (1) { auto [mnt, status] = fs::open(context, context.root.get(), "/mnt"); assert(mnt && status == -ENOENT); if (int ret = fs::mkdir(mnt.get(), 0755); 1) assert(ret == 0 && mnt->flags & fs::D_PRESENT); int ret = rootfs->mount(mnt.get(), "/dev/sda", "/mnt", "fat32", MS_RDONLY | MS_NOATIME | MS_NODEV | MS_NOSUID, "ro,nodev"); assert(ret == 0); } current_process->attr.system = 0; current_thread->attr &= ~kernel::task::thread::SYSTEM; types::elf::elf32_load_data d{ .exec_dent{}, .argv{"/mnt/busybox", "sh", "/mnt/initsh"}, .envp{"LANG=C", "HOME=/root", "PATH=/mnt", "PWD=/"}, .ip{}, .sp{}}; auto [exec, ret] = fs::open(context, context.root.get(), d.argv[0]); if (!exec || ret) { kmsg("kernel panic: init not found!"); freeze(); } d.exec_dent = exec.get(); if (int ret = types::elf::elf32_load(d); 1) assert(ret == 0); exec.reset(); int ds = 0x33, cs = 0x2b; asm volatile( "mov %0, %%rax\n" "mov %%ax, %%ds\n" "mov %%ax, %%es\n" "mov %%ax, %%fs\n" "mov %%ax, %%gs\n" "push %%rax\n" "push %2\n" "push $0x200\n" "push %1\n" "push %3\n" "iretq\n" : : "g"(ds), "g"(cs), "g"(d.sp), "g"(d.ip) : "eax", "memory"); freeze(); } SECTION(".text.kinit") void NORETURN init_scheduler(kernel::mem::paging::pfn_t kernel_stack_pfn) { procs = new proclist; asm volatile( "mov %2, %%rdi\n" "mov %0, %%rsp\n" "sub $24, %%rsp\n" "mov %=f, %%rbx\n" "mov %%rbx, (%%rsp)\n" // return address "mov %%rbx, 16(%%rsp)\n" // previous frame return address "xor %%rbx, %%rbx\n" "mov %%rbx, 8(%%rsp)\n" // previous frame rbp "mov %%rsp, %%rbp\n" // current frame rbp "push %1\n" "mov $0x10, %%ax\n" "mov %%ax, %%ss\n" "mov %%ax, %%ds\n" "mov %%ax, %%es\n" "mov %%ax, %%fs\n" "mov %%ax, %%gs\n" "push $0x0\n" "popf\n" "ret\n" "%=:\n" "ud2" : : "a"(current_thread->kstack.sp), "c"(_kernel_init), "g"(kernel_stack_pfn) : "memory"); freeze(); } extern "C" void asm_ctx_switch(uintptr_t* curr_sp, uintptr_t* next_sp); extern "C" void after_ctx_switch() { current_thread->kstack.load_interrupt_stack(); current_thread->load_thread_area32(); } bool _schedule() { auto* next_thd = kernel::task::dispatcher::next(); if (current_thread != next_thd) { auto* proc = &procs->find(next_thd->owner); if (current_process != proc) { proc->mms.switch_pd(); current_process = proc; } auto* curr_thd = current_thread; current_thread = next_thd; asm_ctx_switch(&curr_thd->kstack.sp, &next_thd->kstack.sp); } return current_thread->signals.pending_signal() == 0; } bool schedule() { if (kernel::async::preempt_count() != 0) return true; return _schedule(); } void NORETURN schedule_noreturn(void) { _schedule(); freeze(); } void NORETURN freeze(void) { for (;;) asm volatile("cli\n\thlt"); } void NORETURN kill_current(int signo) { procs->kill(current_process->pid, (signo + 128) << 8 | (signo & 0xff)); schedule_noreturn(); }