process.hpp 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493
  1. #pragma once
  2. #include <map>
  3. #include <list>
  4. #include <queue>
  5. #include <set>
  6. #include <tuple>
  7. #include <utility>
  8. #include <fcntl.h>
  9. #include <kernel/errno.h>
  10. #include <kernel/event/evtqueue.hpp>
  11. #include <kernel/interrupt.h>
  12. #include <kernel/mm.hpp>
  13. #include <kernel/signal.hpp>
  14. #include <kernel/task.h>
  15. #include <kernel/tty.hpp>
  16. #include <kernel/vfs.hpp>
  17. #include <stdint.h>
  18. #include <sys/types.h>
  19. #include <types/allocator.hpp>
  20. #include <types/cplusplus.hpp>
  21. #include <types/hash_map.hpp>
  22. #include <types/status.h>
  23. #include <types/string.hpp>
  24. #include <types/types.h>
  25. class process;
  26. namespace kernel::tasks {
  27. struct thread;
  28. } // namespace kernel::tasks
  29. class proclist;
  30. class readyqueue;
  31. inline process* volatile current_process;
  32. inline kernel::tasks::thread* volatile current_thread;
  33. inline proclist* procs;
  34. inline readyqueue* readythds;
  35. inline tss32_t tss;
  36. struct process_attr {
  37. uint16_t system : 1;
  38. uint16_t zombie : 1 = 0;
  39. };
  40. struct thread_attr {
  41. uint32_t system : 1;
  42. uint32_t ready : 1;
  43. uint32_t wait : 1;
  44. };
  45. namespace kernel::tasks {
  46. struct thread {
  47. private:
  48. void alloc_kstack(void);
  49. void free_kstack(uint32_t p);
  50. public:
  51. uint32_t* esp;
  52. uint32_t pkstack;
  53. pid_t owner;
  54. thread_attr attr;
  55. explicit inline thread(pid_t owner)
  56. : owner { owner }
  57. , attr { .system = 1, .ready = 1, .wait = 0, }
  58. {
  59. alloc_kstack();
  60. }
  61. inline thread(const thread& val, pid_t owner)
  62. : owner { owner } , attr { val.attr }
  63. {
  64. alloc_kstack();
  65. }
  66. constexpr thread(thread&& val) = default;
  67. inline ~thread() { free_kstack(pkstack); }
  68. constexpr bool operator==(const thread& rhs) const
  69. { return pkstack == rhs.pkstack; }
  70. constexpr bool operator<(const thread& rhs) const
  71. { return pkstack < rhs.pkstack; }
  72. };
  73. }
  74. class filearr {
  75. public:
  76. using container_type = std::list<fs::file>;
  77. using array_type = std::map<int, container_type::iterator>;
  78. private:
  79. inline static container_type* files;
  80. array_type arr;
  81. std::priority_queue<int, std::vector<int>, std::greater<int>> _fds;
  82. int _greatest_fd;
  83. public:
  84. inline static void init_global_file_container(void)
  85. {
  86. files = new container_type;
  87. }
  88. private:
  89. // iter should not be nullptr
  90. constexpr void _close(container_type::iterator iter)
  91. {
  92. if (iter->ref == 1) {
  93. if (iter->type == fs::file::types::pipe) {
  94. assert(iter->flags.read | iter->flags.write);
  95. if (iter->flags.read)
  96. iter->ptr.pp->close_read();
  97. else
  98. iter->ptr.pp->close_write();
  99. if (iter->ptr.pp->is_free())
  100. delete iter->ptr.pp;
  101. }
  102. files->erase(iter);
  103. } else
  104. --iter->ref;
  105. }
  106. constexpr int next_fd()
  107. {
  108. if (_fds.empty())
  109. return _greatest_fd++;
  110. int retval = _fds.top();
  111. _fds.pop();
  112. return retval;
  113. }
  114. public:
  115. constexpr filearr(const filearr&) = delete;
  116. constexpr filearr& operator=(const filearr&) = delete;
  117. constexpr filearr& operator=(filearr&&) = delete;
  118. constexpr filearr(void) = default;
  119. constexpr filearr(filearr&& val) = default;
  120. constexpr int dup(int old_fd)
  121. {
  122. return dup2(old_fd, next_fd());
  123. }
  124. // TODO: the third parameter should be int flags
  125. // determining whether the fd should be closed
  126. // after exec() (FD_CLOEXEC)
  127. constexpr int dup2(int old_fd, int new_fd)
  128. {
  129. close(new_fd);
  130. auto iter = arr.find(old_fd);
  131. if (!iter)
  132. return -EBADF;
  133. auto [ _, iter_file ] = *iter;
  134. this->arr.emplace(new_fd, iter_file);
  135. ++iter_file->ref;
  136. return new_fd;
  137. }
  138. constexpr void dup_all(const filearr& orig)
  139. {
  140. this->_fds = orig._fds;
  141. this->_greatest_fd = orig._greatest_fd;
  142. for (auto [ fd, iter_file ] : orig.arr) {
  143. this->arr.emplace(fd, iter_file);
  144. ++iter_file->ref;
  145. }
  146. }
  147. constexpr fs::file* operator[](int i) const
  148. {
  149. auto iter = arr.find(i);
  150. if (!iter)
  151. return nullptr;
  152. return &iter->second;
  153. }
  154. int pipe(int pipefd[2])
  155. {
  156. // TODO: set read/write flags
  157. auto* pipe = new fs::pipe;
  158. auto iter = files->emplace(files->cend(), fs::file {
  159. fs::file::types::pipe,
  160. { .pp = pipe },
  161. nullptr,
  162. 0,
  163. 1,
  164. {
  165. .read = 1,
  166. .write = 0,
  167. },
  168. });
  169. bool inserted = false;
  170. int fd = next_fd();
  171. std::tie(std::ignore, inserted) = arr.emplace(fd, iter);
  172. assert(inserted);
  173. // TODO: use copy_to_user()
  174. pipefd[0] = fd;
  175. iter = files->emplace(files->cend(), fs::file {
  176. fs::file::types::pipe,
  177. { .pp = pipe },
  178. nullptr,
  179. 0,
  180. 1,
  181. {
  182. .read = 0,
  183. .write = 1,
  184. },
  185. });
  186. fd = next_fd();
  187. std::tie(std::ignore, inserted) = arr.emplace(fd, iter);
  188. assert(inserted);
  189. // TODO: use copy_to_user()
  190. pipefd[1] = fd;
  191. return 0;
  192. }
  193. // TODO: file opening permissions check
  194. int open(const char* filename, uint32_t flags)
  195. {
  196. auto* dentry = fs::vfs_open(filename);
  197. if (!dentry) {
  198. errno = ENOTFOUND;
  199. return -1;
  200. }
  201. // check whether dentry is a file if O_DIRECTORY is set
  202. if ((flags & O_DIRECTORY) && !dentry->ind->flags.in.directory) {
  203. errno = ENOTDIR;
  204. return -1;
  205. }
  206. auto iter = files->emplace(files->cend(), fs::file {
  207. fs::file::types::ind,
  208. { .ind = dentry->ind },
  209. dentry->parent,
  210. 0,
  211. 1,
  212. {
  213. .read = !!(flags & (O_RDONLY | O_RDWR)),
  214. .write = !!(flags & (O_WRONLY | O_RDWR)),
  215. },
  216. });
  217. int fd = next_fd();
  218. auto [ _, inserted ] = arr.emplace(fd, iter);
  219. assert(inserted);
  220. return fd;
  221. }
  222. constexpr void close(int fd)
  223. {
  224. auto iter = arr.find(fd);
  225. if (!iter)
  226. return;
  227. _close(iter->second);
  228. _fds.push(fd);
  229. arr.erase(iter);
  230. }
  231. constexpr void close_all(void)
  232. {
  233. for (auto&& [ fd, file ] : arr) {
  234. _close(file);
  235. _fds.push(fd);
  236. }
  237. arr.clear();
  238. }
  239. constexpr ~filearr()
  240. {
  241. close_all();
  242. }
  243. };
  244. class process {
  245. public:
  246. struct wait_obj {
  247. pid_t pid;
  248. int code;
  249. };
  250. public:
  251. mutable kernel::mm_list mms;
  252. std::set<kernel::tasks::thread> thds;
  253. kernel::cond_var cv_wait;
  254. std::list<wait_obj> waitlist;
  255. process_attr attr;
  256. filearr files;
  257. types::string<> pwd;
  258. kernel::signal_list signals;
  259. pid_t pid;
  260. pid_t ppid;
  261. pid_t pgid;
  262. pid_t sid;
  263. tty* control_tty;
  264. std::set<pid_t> children;
  265. public:
  266. process(const process&) = delete;
  267. explicit process(const process& parent, pid_t pid);
  268. // this function is used for system initialization
  269. // DO NOT use this after the system is on
  270. explicit process(pid_t pid, pid_t ppid);
  271. constexpr bool is_system(void) const
  272. { return attr.system; }
  273. constexpr bool is_zombie(void) const
  274. { return attr.zombie; }
  275. };
  276. class proclist final {
  277. public:
  278. using list_type = std::map<pid_t, process>;
  279. using iterator = list_type::iterator;
  280. using const_iterator = list_type::const_iterator;
  281. private:
  282. list_type m_procs;
  283. pid_t m_nextpid = 1;
  284. constexpr pid_t next_pid() { return m_nextpid++; }
  285. public:
  286. process& emplace(pid_t ppid)
  287. {
  288. pid_t pid = next_pid();
  289. auto [ iter, inserted ] = m_procs.try_emplace(pid, pid, ppid);
  290. assert(inserted);
  291. if (try_find(ppid)) {
  292. bool success = false;
  293. std::tie(std::ignore, success) =
  294. find(ppid).children.insert(pid);
  295. assert(success);
  296. }
  297. return iter->second;
  298. }
  299. process& copy_from(process& proc)
  300. {
  301. pid_t pid = next_pid();
  302. auto [ iter, inserted ] = m_procs.try_emplace(pid, proc, pid);
  303. assert(inserted);
  304. proc.children.insert(pid);
  305. return iter->second;
  306. }
  307. constexpr void remove(pid_t pid)
  308. {
  309. make_children_orphans(pid);
  310. auto proc_iter = m_procs.find(pid);
  311. auto ppid = proc_iter->second.ppid;
  312. find(ppid).children.erase(pid);
  313. m_procs.erase(proc_iter);
  314. }
  315. constexpr bool try_find(pid_t pid) const
  316. { return m_procs.find(pid); }
  317. // if process doesn't exist, the behavior is undefined
  318. constexpr process& find(pid_t pid)
  319. {
  320. auto iter = m_procs.find(pid);
  321. assert(iter);
  322. return iter->second;
  323. }
  324. constexpr bool has_child(pid_t pid)
  325. {
  326. auto& proc = find(pid);
  327. return !proc.children.empty();
  328. }
  329. constexpr void make_children_orphans(pid_t pid)
  330. {
  331. auto& children = find(pid).children;
  332. auto& init_children = find(1).children;
  333. for (auto item : children) {
  334. init_children.insert(item);
  335. find(item).ppid = 1;
  336. }
  337. children.clear();
  338. }
  339. // the process MUST exist, or the behavior is undefined
  340. void send_signal(pid_t pid, kernel::sig_t signal)
  341. {
  342. auto& proc = this->find(pid);
  343. proc.signals.set(signal);
  344. }
  345. void send_signal_grp(pid_t pgid, kernel::sig_t signal)
  346. {
  347. for (auto& [ pid, proc ] : m_procs) {
  348. if (proc.pgid == pgid)
  349. proc.signals.set(signal);
  350. }
  351. }
  352. void kill(pid_t pid, int exit_code);
  353. };
  354. // TODO: lock and unlock
  355. class readyqueue final {
  356. public:
  357. using thread = kernel::tasks::thread;
  358. using list_type = std::list<thread*>;
  359. private:
  360. list_type m_thds;
  361. private:
  362. readyqueue(const readyqueue&) = delete;
  363. readyqueue(readyqueue&&) = delete;
  364. readyqueue& operator=(const readyqueue&) = delete;
  365. readyqueue& operator=(readyqueue&&) = delete;
  366. ~readyqueue() = delete;
  367. public:
  368. constexpr explicit readyqueue(void) = default;
  369. constexpr void push(thread* thd)
  370. { m_thds.push_back(thd); }
  371. constexpr thread* pop(void)
  372. {
  373. m_thds.remove_if([](thread* item) {
  374. return !item->attr.ready;
  375. });
  376. auto* retval = m_thds.front();
  377. m_thds.pop_front();
  378. return retval;
  379. }
  380. constexpr thread* query(void)
  381. {
  382. auto* thd = this->pop();
  383. this->push(thd);
  384. return thd;
  385. }
  386. constexpr void remove_all(thread* thd)
  387. { m_thds.remove(thd); }
  388. };
  389. void NORETURN init_scheduler(void);
  390. /// @return true if returned normally, false if being interrupted
  391. bool schedule(void);
  392. void NORETURN schedule_noreturn(void);
  393. constexpr uint32_t push_stack(uint32_t** stack, uint32_t val)
  394. {
  395. --*stack;
  396. **stack = val;
  397. return val;
  398. }
  399. void k_new_thread(void (*func)(void*), void* data);
  400. void NORETURN freeze(void);
  401. void NORETURN kill_current(int exit_code);
  402. void check_signal(void);