process.hpp 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483
  1. #pragma once
  2. #include <map>
  3. #include <list>
  4. #include <queue>
  5. #include <set>
  6. #include <tuple>
  7. #include <utility>
  8. #include <fcntl.h>
  9. #include <kernel/errno.h>
  10. #include <kernel/event/evtqueue.hpp>
  11. #include <kernel/interrupt.h>
  12. #include <kernel/mm.hpp>
  13. #include <kernel/signal.hpp>
  14. #include <kernel/task.h>
  15. #include <kernel/tty.hpp>
  16. #include <kernel/vfs.hpp>
  17. #include <stdint.h>
  18. #include <sys/types.h>
  19. #include <types/allocator.hpp>
  20. #include <types/cplusplus.hpp>
  21. #include <types/hash_map.hpp>
  22. #include <types/path.hpp>
  23. #include <types/status.h>
  24. #include <types/string.hpp>
  25. #include <types/types.h>
  26. class process;
  27. namespace kernel::tasks {
  28. struct thread;
  29. } // namespace kernel::tasks
  30. class proclist;
  31. class readyqueue;
  32. inline process* volatile current_process;
  33. inline kernel::tasks::thread* volatile current_thread;
  34. inline proclist* procs;
  35. inline readyqueue* readythds;
  36. inline tss32_t tss;
  37. struct process_attr {
  38. uint16_t system : 1;
  39. uint16_t zombie : 1 = 0;
  40. };
  41. struct thread_attr {
  42. uint32_t system : 1;
  43. uint32_t ready : 1;
  44. uint32_t wait : 1;
  45. };
  46. namespace kernel::tasks {
  47. using tid_t = uint32_t;
  48. struct thread {
  49. private:
  50. void alloc_kstack(void);
  51. void free_kstack(uint32_t p);
  52. public:
  53. uint32_t* esp;
  54. uint32_t pkstack;
  55. pid_t owner;
  56. thread_attr attr;
  57. int* __user set_child_tid {};
  58. int* __user clear_child_tid {};
  59. types::string<> name {};
  60. explicit inline thread(types::string<> name, pid_t owner)
  61. : owner { owner }
  62. , attr { .system = 1, .ready = 1, .wait = 0, }
  63. , name { name }
  64. {
  65. alloc_kstack();
  66. }
  67. inline thread(const thread& val, pid_t owner)
  68. : owner { owner }, attr { val.attr }, name { val.name }
  69. {
  70. alloc_kstack();
  71. }
  72. constexpr thread(thread&& val) = default;
  73. inline ~thread() { free_kstack(pkstack); }
  74. constexpr tid_t tid() const { return pkstack; }
  75. constexpr bool operator==(const thread& rhs) const
  76. { return pkstack == rhs.pkstack; }
  77. constexpr bool operator<(const thread& rhs) const
  78. { return pkstack < rhs.pkstack; }
  79. };
  80. }
  81. class filearr {
  82. public:
  83. using container_type = std::list<fs::file>;
  84. using array_type = std::map<int, container_type::iterator>;
  85. private:
  86. inline static container_type* files;
  87. array_type arr;
  88. std::priority_queue<int, std::vector<int>, std::greater<int>> _fds;
  89. int _greatest_fd;
  90. public:
  91. inline static void init_global_file_container(void)
  92. {
  93. files = new container_type;
  94. }
  95. private:
  96. // iter should not be nullptr
  97. constexpr void _close(container_type::iterator iter)
  98. {
  99. if (iter->ref == 1) {
  100. if (iter->type == fs::file::types::pipe) {
  101. assert(iter->flags.read | iter->flags.write);
  102. if (iter->flags.read)
  103. iter->ptr.pp->close_read();
  104. else
  105. iter->ptr.pp->close_write();
  106. if (iter->ptr.pp->is_free())
  107. delete iter->ptr.pp;
  108. }
  109. files->erase(iter);
  110. } else
  111. --iter->ref;
  112. }
  113. constexpr int next_fd()
  114. {
  115. if (_fds.empty())
  116. return _greatest_fd++;
  117. int retval = _fds.top();
  118. _fds.pop();
  119. return retval;
  120. }
  121. public:
  122. constexpr filearr(const filearr&) = delete;
  123. constexpr filearr& operator=(const filearr&) = delete;
  124. constexpr filearr& operator=(filearr&&) = delete;
  125. constexpr filearr(void) = default;
  126. constexpr filearr(filearr&& val) = default;
  127. constexpr int dup(int old_fd)
  128. {
  129. return dup2(old_fd, next_fd());
  130. }
  131. // TODO: the third parameter should be int flags
  132. // determining whether the fd should be closed
  133. // after exec() (FD_CLOEXEC)
  134. constexpr int dup2(int old_fd, int new_fd)
  135. {
  136. close(new_fd);
  137. auto iter = arr.find(old_fd);
  138. if (!iter)
  139. return -EBADF;
  140. auto [ _, iter_file ] = *iter;
  141. this->arr.emplace(new_fd, iter_file);
  142. ++iter_file->ref;
  143. return new_fd;
  144. }
  145. constexpr void dup_all(const filearr& orig)
  146. {
  147. this->_fds = orig._fds;
  148. this->_greatest_fd = orig._greatest_fd;
  149. for (auto [ fd, iter_file ] : orig.arr) {
  150. this->arr.emplace(fd, iter_file);
  151. ++iter_file->ref;
  152. }
  153. }
  154. constexpr fs::file* operator[](int i) const
  155. {
  156. auto iter = arr.find(i);
  157. if (!iter)
  158. return nullptr;
  159. return &iter->second;
  160. }
  161. int pipe(int pipefd[2])
  162. {
  163. // TODO: set read/write flags
  164. auto* pipe = new fs::pipe;
  165. auto iter = files->emplace(files->cend(), fs::file {
  166. fs::file::types::pipe,
  167. { .pp = pipe },
  168. nullptr,
  169. 0,
  170. 1,
  171. {
  172. .read = 1,
  173. .write = 0,
  174. .close_on_exec = 0,
  175. },
  176. });
  177. bool inserted = false;
  178. int fd = next_fd();
  179. std::tie(std::ignore, inserted) = arr.emplace(fd, iter);
  180. assert(inserted);
  181. // TODO: use copy_to_user()
  182. pipefd[0] = fd;
  183. iter = files->emplace(files->cend(), fs::file {
  184. fs::file::types::pipe,
  185. { .pp = pipe },
  186. nullptr,
  187. 0,
  188. 1,
  189. {
  190. .read = 0,
  191. .write = 1,
  192. .close_on_exec = 0,
  193. },
  194. });
  195. fd = next_fd();
  196. std::tie(std::ignore, inserted) = arr.emplace(fd, iter);
  197. assert(inserted);
  198. // TODO: use copy_to_user()
  199. pipefd[1] = fd;
  200. return 0;
  201. }
  202. int open(const process& current, const types::path& filepath, int flags, mode_t mode);
  203. constexpr void close(int fd)
  204. {
  205. auto iter = arr.find(fd);
  206. if (!iter)
  207. return;
  208. _close(iter->second);
  209. _fds.push(fd);
  210. arr.erase(iter);
  211. }
  212. constexpr void onexec()
  213. {
  214. for (auto [ fd, file ] : arr) {
  215. if (file->flags.close_on_exec)
  216. close(fd);
  217. }
  218. }
  219. constexpr void close_all(void)
  220. {
  221. for (auto&& [ fd, file ] : arr) {
  222. _close(file);
  223. _fds.push(fd);
  224. }
  225. arr.clear();
  226. }
  227. constexpr ~filearr()
  228. {
  229. close_all();
  230. }
  231. };
  232. class process {
  233. public:
  234. struct wait_obj {
  235. pid_t pid;
  236. int code;
  237. };
  238. public:
  239. kernel::memory::mm_list mms {};
  240. std::set<kernel::tasks::thread> thds;
  241. kernel::cond_var cv_wait;
  242. std::list<wait_obj> waitlist;
  243. process_attr attr {};
  244. filearr files;
  245. types::path pwd;
  246. kernel::signal_list signals;
  247. pid_t pid {};
  248. pid_t ppid {};
  249. pid_t pgid {};
  250. pid_t sid {};
  251. tty* control_tty {};
  252. fs::vfs::dentry* root { fs::fs_root };
  253. std::set<pid_t> children;
  254. public:
  255. process(const process&) = delete;
  256. explicit process(const process& parent, pid_t pid);
  257. // this function is used for system initialization
  258. // DO NOT use this after the system is on
  259. explicit process(pid_t pid, pid_t ppid);
  260. constexpr bool is_system(void) const
  261. { return attr.system; }
  262. constexpr bool is_zombie(void) const
  263. { return attr.zombie; }
  264. };
  265. class proclist final {
  266. public:
  267. using list_type = std::map<pid_t, process>;
  268. using iterator = list_type::iterator;
  269. using const_iterator = list_type::const_iterator;
  270. private:
  271. list_type m_procs;
  272. pid_t m_nextpid = 1;
  273. constexpr pid_t next_pid() { return m_nextpid++; }
  274. public:
  275. process& emplace(pid_t ppid)
  276. {
  277. pid_t pid = next_pid();
  278. auto [ iter, inserted ] = m_procs.try_emplace(pid, pid, ppid);
  279. assert(inserted);
  280. if (try_find(ppid)) {
  281. bool success = false;
  282. std::tie(std::ignore, success) =
  283. find(ppid).children.insert(pid);
  284. assert(success);
  285. }
  286. return iter->second;
  287. }
  288. process& copy_from(process& proc)
  289. {
  290. pid_t pid = next_pid();
  291. auto [ iter, inserted ] = m_procs.try_emplace(pid, proc, pid);
  292. assert(inserted);
  293. proc.children.insert(pid);
  294. return iter->second;
  295. }
  296. constexpr void remove(pid_t pid)
  297. {
  298. make_children_orphans(pid);
  299. auto proc_iter = m_procs.find(pid);
  300. auto ppid = proc_iter->second.ppid;
  301. find(ppid).children.erase(pid);
  302. m_procs.erase(proc_iter);
  303. }
  304. constexpr bool try_find(pid_t pid) const
  305. { return m_procs.find(pid); }
  306. // if process doesn't exist, the behavior is undefined
  307. constexpr process& find(pid_t pid)
  308. {
  309. auto iter = m_procs.find(pid);
  310. assert(iter);
  311. return iter->second;
  312. }
  313. constexpr bool has_child(pid_t pid)
  314. {
  315. auto& proc = find(pid);
  316. return !proc.children.empty();
  317. }
  318. constexpr void make_children_orphans(pid_t pid)
  319. {
  320. auto& children = find(pid).children;
  321. auto& init_children = find(1).children;
  322. for (auto item : children) {
  323. init_children.insert(item);
  324. find(item).ppid = 1;
  325. }
  326. children.clear();
  327. }
  328. // the process MUST exist, or the behavior is undefined
  329. void send_signal(pid_t pid, kernel::sig_t signal)
  330. {
  331. auto& proc = this->find(pid);
  332. proc.signals.set(signal);
  333. }
  334. void send_signal_grp(pid_t pgid, kernel::sig_t signal)
  335. {
  336. for (auto& [ pid, proc ] : m_procs) {
  337. if (proc.pgid == pgid)
  338. proc.signals.set(signal);
  339. }
  340. }
  341. void kill(pid_t pid, int exit_code);
  342. };
  343. // TODO: lock and unlock
  344. class readyqueue final {
  345. public:
  346. using thread = kernel::tasks::thread;
  347. using list_type = std::list<thread*>;
  348. private:
  349. list_type m_thds;
  350. private:
  351. readyqueue(const readyqueue&) = delete;
  352. readyqueue(readyqueue&&) = delete;
  353. readyqueue& operator=(const readyqueue&) = delete;
  354. readyqueue& operator=(readyqueue&&) = delete;
  355. ~readyqueue() = delete;
  356. public:
  357. constexpr explicit readyqueue(void) = default;
  358. constexpr void push(thread* thd)
  359. { m_thds.push_back(thd); }
  360. constexpr thread* pop(void)
  361. {
  362. m_thds.remove_if([](thread* item) {
  363. return !item->attr.ready;
  364. });
  365. auto* retval = m_thds.front();
  366. m_thds.pop_front();
  367. return retval;
  368. }
  369. constexpr thread* query(void)
  370. {
  371. auto* thd = this->pop();
  372. this->push(thd);
  373. return thd;
  374. }
  375. constexpr void remove_all(thread* thd)
  376. { m_thds.remove(thd); }
  377. };
  378. void NORETURN init_scheduler(void);
  379. /// @return true if returned normally, false if being interrupted
  380. bool schedule(void);
  381. void NORETURN schedule_noreturn(void);
  382. constexpr uint32_t push_stack(uint32_t** stack, uint32_t val)
  383. {
  384. --*stack;
  385. **stack = val;
  386. return val;
  387. }
  388. void k_new_thread(void (*func)(void*), void* data);
  389. void NORETURN freeze(void);
  390. void NORETURN kill_current(int exit_code);
  391. void check_signal(void);