process.hpp 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498
  1. #pragma once
  2. #include <map>
  3. #include <set>
  4. #include <tuple>
  5. #include <utility>
  6. #include <fcntl.h>
  7. #include <kernel/errno.h>
  8. #include <kernel/event/evtqueue.hpp>
  9. #include <kernel/interrupt.h>
  10. #include <kernel/mm.hpp>
  11. #include <kernel/signal.hpp>
  12. #include <kernel/task.h>
  13. #include <kernel/tty.hpp>
  14. #include <kernel/vfs.hpp>
  15. #include <stdint.h>
  16. #include <sys/types.h>
  17. #include <types/allocator.hpp>
  18. #include <types/cplusplus.hpp>
  19. #include <types/hash_map.hpp>
  20. #include <types/status.h>
  21. #include <types/string.hpp>
  22. #include <types/types.h>
  23. class process;
  24. namespace kernel::tasks {
  25. struct thread;
  26. } // namespace kernel::tasks
  27. class proclist;
  28. class readyqueue;
  29. inline process* volatile current_process;
  30. inline kernel::tasks::thread* volatile current_thread;
  31. inline proclist* procs;
  32. inline readyqueue* readythds;
  33. inline tss32_t tss;
  34. struct process_attr {
  35. uint16_t system : 1;
  36. uint16_t zombie : 1 = 0;
  37. };
  38. struct thread_attr {
  39. uint32_t system : 1;
  40. uint32_t ready : 1;
  41. uint32_t wait : 1;
  42. };
  43. namespace kernel::tasks {
  44. struct thread {
  45. private:
  46. void alloc_kstack(void);
  47. void free_kstack(uint32_t p);
  48. public:
  49. uint32_t* esp;
  50. uint32_t pkstack;
  51. pid_t owner;
  52. thread_attr attr;
  53. explicit inline thread(pid_t owner)
  54. : owner { owner }
  55. , attr { .system = 1, .ready = 1, .wait = 0, }
  56. {
  57. alloc_kstack();
  58. }
  59. inline thread(const thread& val, pid_t owner)
  60. : owner { owner } , attr { val.attr }
  61. {
  62. alloc_kstack();
  63. }
  64. constexpr thread(thread&& val) = default;
  65. inline ~thread() { free_kstack(pkstack); }
  66. constexpr bool operator==(const thread& rhs) const
  67. { return pkstack == rhs.pkstack; }
  68. constexpr bool operator<(const thread& rhs) const
  69. { return pkstack < rhs.pkstack; }
  70. };
  71. }
  72. class filearr {
  73. public:
  74. using container_type = types::list<fs::file>;
  75. using array_type = std::map<int, container_type::iterator_type>;
  76. private:
  77. inline static container_type* files;
  78. array_type arr;
  79. public:
  80. inline static void init_global_file_container(void)
  81. {
  82. files = new container_type;
  83. }
  84. private:
  85. // iter should not be nullptr
  86. constexpr void _close(container_type::iterator_type iter)
  87. {
  88. if (iter->ref == 1) {
  89. if (iter->type == fs::file::types::pipe) {
  90. assert(iter->flags.read | iter->flags.write);
  91. if (iter->flags.read)
  92. iter->ptr.pp->close_read();
  93. else
  94. iter->ptr.pp->close_write();
  95. if (iter->ptr.pp->is_free())
  96. delete iter->ptr.pp;
  97. }
  98. files->erase(iter);
  99. } else
  100. --iter->ref;
  101. }
  102. constexpr int _next_fd(void) const
  103. {
  104. int fd = 0;
  105. for (auto [ item_fd, iter_file ] : arr) {
  106. if (item_fd == fd)
  107. ++fd;
  108. }
  109. return fd;
  110. }
  111. public:
  112. constexpr filearr(const filearr&) = delete;
  113. constexpr filearr& operator=(const filearr&) = delete;
  114. constexpr filearr& operator=(filearr&&) = delete;
  115. constexpr filearr(void) = default;
  116. constexpr filearr(filearr&& val) = default;
  117. constexpr int dup(int old_fd)
  118. {
  119. return dup2(old_fd, _next_fd());
  120. }
  121. // TODO: the third parameter should be int flags
  122. // determining whether the fd should be closed
  123. // after exec() (FD_CLOEXEC)
  124. constexpr int dup2(int old_fd, int new_fd)
  125. {
  126. close(new_fd);
  127. auto iter = arr.find(old_fd);
  128. if (!iter)
  129. return -EBADF;
  130. auto [ _, iter_file ] = *iter;
  131. this->arr.emplace(new_fd, iter_file);
  132. ++iter_file->ref;
  133. return new_fd;
  134. }
  135. constexpr void dup_all(const filearr& orig)
  136. {
  137. for (auto [ fd, iter_file ] : orig.arr) {
  138. this->arr.emplace(fd, iter_file);
  139. ++iter_file->ref;
  140. }
  141. }
  142. constexpr fs::file* operator[](int i) const
  143. {
  144. auto iter = arr.find(i);
  145. if (!iter)
  146. return nullptr;
  147. return &iter->second;
  148. }
  149. int pipe(int pipefd[2])
  150. {
  151. // TODO: set read/write flags
  152. auto* pipe = new fs::pipe;
  153. auto iter = files->emplace_back(fs::file {
  154. fs::file::types::pipe,
  155. { .pp = pipe },
  156. nullptr,
  157. 0,
  158. 1,
  159. {
  160. .read = 1,
  161. .write = 0,
  162. },
  163. });
  164. bool inserted = false;
  165. int fd = _next_fd();
  166. std::tie(std::ignore, inserted) =
  167. arr.insert(std::make_pair(fd, iter));
  168. assert(inserted);
  169. // TODO: use copy_to_user()
  170. pipefd[0] = fd;
  171. iter = files->emplace_back(fs::file {
  172. fs::file::types::pipe,
  173. { .pp = pipe },
  174. nullptr,
  175. 0,
  176. 1,
  177. {
  178. .read = 0,
  179. .write = 1,
  180. },
  181. });
  182. fd = _next_fd();
  183. std::tie(std::ignore, inserted) = arr.emplace(fd, iter);
  184. assert(inserted);
  185. // TODO: use copy_to_user()
  186. pipefd[1] = fd;
  187. return 0;
  188. }
  189. // TODO: file opening permissions check
  190. int open(const char* filename, uint32_t flags)
  191. {
  192. auto* dentry = fs::vfs_open(filename);
  193. if (!dentry) {
  194. errno = ENOTFOUND;
  195. return -1;
  196. }
  197. // check whether dentry is a file if O_DIRECTORY is set
  198. if ((flags & O_DIRECTORY) && !dentry->ind->flags.in.directory) {
  199. errno = ENOTDIR;
  200. return -1;
  201. }
  202. auto iter = files->emplace_back(fs::file {
  203. fs::file::types::ind,
  204. { .ind = dentry->ind },
  205. dentry->parent,
  206. 0,
  207. 1,
  208. {
  209. .read = !!(flags & (O_RDONLY | O_RDWR)),
  210. .write = !!(flags & (O_WRONLY | O_RDWR)),
  211. },
  212. });
  213. int fd = _next_fd();
  214. auto [ _, inserted ] = arr.emplace(fd, iter);
  215. assert(inserted);
  216. return fd;
  217. }
  218. constexpr void close(int fd)
  219. {
  220. auto iter = arr.find(fd);
  221. if (!iter)
  222. return;
  223. _close(iter->second);
  224. arr.erase(iter);
  225. }
  226. constexpr void close_all(void)
  227. {
  228. for (auto&& [ fd, file ] : arr)
  229. _close(file);
  230. arr.clear();
  231. }
  232. constexpr ~filearr()
  233. {
  234. close_all();
  235. }
  236. };
  237. class process {
  238. public:
  239. struct wait_obj {
  240. pid_t pid;
  241. int code;
  242. };
  243. public:
  244. mutable kernel::mm_list mms;
  245. std::set<kernel::tasks::thread> thds;
  246. kernel::cond_var cv_wait;
  247. types::list<wait_obj> waitlist;
  248. process_attr attr;
  249. filearr files;
  250. types::string<> pwd;
  251. kernel::signal_list signals;
  252. pid_t pid;
  253. pid_t ppid;
  254. pid_t pgid;
  255. pid_t sid;
  256. tty* control_tty;
  257. std::set<pid_t> children;
  258. public:
  259. process(const process&) = delete;
  260. explicit process(const process& parent, pid_t pid);
  261. // this function is used for system initialization
  262. // DO NOT use this after the system is on
  263. explicit process(pid_t pid, pid_t ppid);
  264. constexpr bool is_system(void) const
  265. { return attr.system; }
  266. constexpr bool is_zombie(void) const
  267. { return attr.zombie; }
  268. };
  269. class proclist final {
  270. public:
  271. using list_type = std::map<pid_t, process>;
  272. using iterator = list_type::iterator;
  273. using const_iterator = list_type::const_iterator;
  274. private:
  275. list_type m_procs;
  276. pid_t m_nextpid = 1;
  277. constexpr pid_t next_pid() { return m_nextpid++; }
  278. public:
  279. process& emplace(pid_t ppid)
  280. {
  281. pid_t pid = next_pid();
  282. auto [ iter, inserted ] = m_procs.try_emplace(pid, pid, ppid);
  283. assert(inserted);
  284. if (try_find(ppid)) {
  285. bool success = false;
  286. std::tie(std::ignore, success) =
  287. find(ppid).children.insert(pid);
  288. assert(success);
  289. }
  290. return iter->second;
  291. }
  292. process& copy_from(process& proc)
  293. {
  294. pid_t pid = next_pid();
  295. auto [ iter, inserted ] = m_procs.try_emplace(pid, proc, pid);
  296. assert(inserted);
  297. proc.children.insert(pid);
  298. return iter->second;
  299. }
  300. constexpr void remove(pid_t pid)
  301. {
  302. make_children_orphans(pid);
  303. auto proc_iter = m_procs.find(pid);
  304. auto ppid = proc_iter->second.ppid;
  305. find(ppid).children.erase(pid);
  306. m_procs.erase(proc_iter);
  307. }
  308. constexpr bool try_find(pid_t pid) const
  309. { return m_procs.find(pid); }
  310. // if process doesn't exist, the behavior is undefined
  311. constexpr process& find(pid_t pid)
  312. {
  313. auto iter = m_procs.find(pid);
  314. assert(iter);
  315. return iter->second;
  316. }
  317. constexpr bool has_child(pid_t pid)
  318. {
  319. auto& proc = find(pid);
  320. return !proc.children.empty();
  321. }
  322. constexpr void make_children_orphans(pid_t pid)
  323. {
  324. auto& children = find(pid).children;
  325. auto& init_children = find(1).children;
  326. for (auto item : children) {
  327. init_children.insert(item);
  328. find(item).ppid = 1;
  329. }
  330. children.clear();
  331. }
  332. // the process MUST exist, or the behavior is undefined
  333. void send_signal(pid_t pid, kernel::sig_t signal)
  334. {
  335. auto& proc = this->find(pid);
  336. proc.signals.set(signal);
  337. }
  338. void send_signal_grp(pid_t pgid, kernel::sig_t signal)
  339. {
  340. for (auto& [ pid, proc ] : m_procs) {
  341. if (proc.pgid == pgid)
  342. proc.signals.set(signal);
  343. }
  344. }
  345. void kill(pid_t pid, int exit_code);
  346. };
  347. class readyqueue final {
  348. public:
  349. using thread = kernel::tasks::thread;
  350. using list_type = types::list<thread*>;
  351. using iterator_type = list_type::iterator_type;
  352. using const_iterator_type = list_type::const_iterator_type;
  353. private:
  354. list_type m_thds;
  355. private:
  356. readyqueue(const readyqueue&) = delete;
  357. readyqueue(readyqueue&&) = delete;
  358. readyqueue& operator=(const readyqueue&) = delete;
  359. readyqueue& operator=(readyqueue&&) = delete;
  360. ~readyqueue() = delete;
  361. public:
  362. constexpr explicit readyqueue(void) = default;
  363. constexpr void push(thread* thd)
  364. {
  365. m_thds.push_back(thd);
  366. }
  367. constexpr thread* pop(void)
  368. {
  369. auto iter = m_thds.begin();
  370. while (!((*iter)->attr.ready))
  371. iter = m_thds.erase(iter);
  372. auto* ptr = *iter;
  373. m_thds.erase(iter);
  374. return ptr;
  375. }
  376. constexpr thread* query(void)
  377. {
  378. auto* thd = this->pop();
  379. this->push(thd);
  380. return thd;
  381. }
  382. constexpr void remove_all(thread* thd)
  383. {
  384. auto iter = m_thds.find(thd);
  385. while (iter != m_thds.end()) {
  386. m_thds.erase(iter);
  387. iter = m_thds.find(thd);
  388. }
  389. }
  390. };
  391. void NORETURN init_scheduler(void);
  392. /// @return true if returned normally, false if being interrupted
  393. bool schedule(void);
  394. void NORETURN schedule_noreturn(void);
  395. constexpr uint32_t push_stack(uint32_t** stack, uint32_t val)
  396. {
  397. --*stack;
  398. **stack = val;
  399. return val;
  400. }
  401. void k_new_thread(void (*func)(void*), void* data);
  402. void NORETURN freeze(void);
  403. void NORETURN kill_current(int exit_code);
  404. void check_signal(void);