process.hpp 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574
  1. #pragma once
  2. #include <fcntl.h>
  3. #include <kernel/errno.h>
  4. #include <kernel/event/evtqueue.hpp>
  5. #include <kernel/interrupt.h>
  6. #include <kernel/mm.hpp>
  7. #include <kernel/signal.hpp>
  8. #include <kernel/task.h>
  9. #include <kernel/tty.hpp>
  10. #include <kernel/vfs.hpp>
  11. #include <stdint.h>
  12. #include <sys/types.h>
  13. #include <types/allocator.hpp>
  14. #include <types/cplusplus.hpp>
  15. #include <types/hash_map.hpp>
  16. #include <types/list.hpp>
  17. #include <types/map.hpp>
  18. #include <types/pair.hpp>
  19. #include <types/status.h>
  20. #include <types/string.hpp>
  21. #include <types/types.h>
  22. class process;
  23. struct thread;
  24. class proclist;
  25. class readyqueue;
  26. inline process* volatile current_process;
  27. inline thread* volatile current_thread;
  28. inline proclist* procs;
  29. inline readyqueue* readythds;
  30. inline tss32_t tss;
  31. struct process_attr {
  32. uint16_t system : 1;
  33. uint16_t zombie : 1 = 0;
  34. };
  35. struct thread_attr {
  36. uint32_t system : 1;
  37. uint32_t ready : 1;
  38. uint32_t wait : 1;
  39. };
  40. struct thread {
  41. private:
  42. void alloc_kstack(void);
  43. void free_kstack(uint32_t p);
  44. public:
  45. uint32_t* esp;
  46. uint32_t pkstack;
  47. process* owner;
  48. thread_attr attr;
  49. explicit inline thread(process* _owner, bool system)
  50. : owner { _owner }
  51. , attr {
  52. .system = system,
  53. .ready = 1,
  54. .wait = 0,
  55. }
  56. {
  57. alloc_kstack();
  58. }
  59. constexpr thread(thread&& val)
  60. : esp { val.esp }
  61. , pkstack { val.pkstack }
  62. , owner { val.owner }
  63. , attr { val.attr }
  64. {
  65. val.attr = {};
  66. val.esp = 0;
  67. val.pkstack = 0;
  68. val.owner = nullptr;
  69. }
  70. inline thread(const thread& val)
  71. : owner { val.owner }
  72. , attr { val.attr }
  73. {
  74. alloc_kstack();
  75. }
  76. inline thread(const thread& thd, process* new_parent)
  77. : thread { thd }
  78. {
  79. owner = new_parent;
  80. }
  81. constexpr ~thread()
  82. {
  83. if (pkstack)
  84. free_kstack(pkstack);
  85. }
  86. };
  87. class thdlist {
  88. public:
  89. using list_type = types::list<thread>;
  90. private:
  91. list_type thds;
  92. public:
  93. constexpr thdlist(const thdlist& obj) = delete;
  94. constexpr thdlist(thdlist&& obj) = delete;
  95. constexpr thdlist& operator=(const thdlist& obj) = delete;
  96. constexpr thdlist& operator=(thdlist&& obj) = delete;
  97. constexpr thdlist(thdlist&& obj, process* new_parent)
  98. : thds { std::move(obj.thds) }
  99. {
  100. for (auto& thd : thds)
  101. thd.owner = new_parent;
  102. }
  103. explicit constexpr thdlist(void) = default;
  104. // implementation is below
  105. constexpr ~thdlist();
  106. template <typename... Args>
  107. constexpr thread& Emplace(Args&&... args)
  108. {
  109. return *thds.emplace_back(std::forward<Args>(args)...);
  110. }
  111. constexpr size_t size(void) const
  112. {
  113. return thds.size();
  114. }
  115. constexpr list_type& underlying_list(void)
  116. {
  117. return thds;
  118. }
  119. };
  120. class process {
  121. public:
  122. class filearr {
  123. public:
  124. using container_type = types::list<fs::file>;
  125. using array_type = types::map<int, container_type::iterator_type>;
  126. private:
  127. inline static container_type* files;
  128. array_type arr;
  129. public:
  130. inline static void init_global_file_container(void)
  131. {
  132. files = new container_type;
  133. }
  134. private:
  135. // iter should not be nullptr
  136. constexpr void _close(container_type::iterator_type iter)
  137. {
  138. if (iter->ref == 1) {
  139. if (iter->type == fs::file::types::pipe) {
  140. assert(iter->flags.read | iter->flags.write);
  141. if (iter->flags.read)
  142. iter->ptr.pp->close_read();
  143. else
  144. iter->ptr.pp->close_write();
  145. if (iter->ptr.pp->is_free())
  146. delete iter->ptr.pp;
  147. }
  148. files->erase(iter);
  149. } else
  150. --iter->ref;
  151. }
  152. constexpr int _next_fd(void) const
  153. {
  154. int fd = 0;
  155. for (auto iter = arr.cbegin(); iter != arr.cend(); ++iter)
  156. if (iter->key == fd)
  157. ++fd;
  158. return fd;
  159. }
  160. public:
  161. constexpr filearr(const filearr&) = delete;
  162. constexpr filearr& operator=(const filearr&) = delete;
  163. constexpr filearr& operator=(filearr&&) = delete;
  164. constexpr filearr(void) = default;
  165. constexpr filearr(filearr&& val)
  166. : arr { std::move(val.arr) }
  167. {
  168. }
  169. constexpr int dup(int old_fd)
  170. {
  171. return dup2(old_fd, _next_fd());
  172. }
  173. // TODO: the third parameter should be int flags
  174. // determining whether the fd should be closed
  175. // after exec() (FD_CLOEXEC)
  176. constexpr int dup2(int old_fd, int new_fd)
  177. {
  178. close(new_fd);
  179. auto iter = arr.find(old_fd);
  180. if (!iter)
  181. return -EBADF;
  182. this->arr.insert(types::make_pair(new_fd, iter->value));
  183. ++iter->value->ref;
  184. return new_fd;
  185. }
  186. constexpr void dup_all(const filearr& orig)
  187. {
  188. for (auto iter : orig.arr) {
  189. this->arr.insert(types::make_pair(iter.key, iter.value));
  190. ++iter.value->ref;
  191. }
  192. }
  193. constexpr fs::file* operator[](int i) const
  194. {
  195. auto iter = arr.find(i);
  196. if (!iter)
  197. return nullptr;
  198. else
  199. return &iter->value;
  200. }
  201. int pipe(int pipefd[2])
  202. {
  203. // TODO: set read/write flags
  204. auto* pipe = new fs::pipe;
  205. auto iter = files->emplace_back(fs::file {
  206. fs::file::types::pipe,
  207. { .pp = pipe },
  208. nullptr,
  209. 0,
  210. 1,
  211. {
  212. .read = 1,
  213. .write = 0,
  214. },
  215. });
  216. int fd = _next_fd();
  217. arr.insert(types::make_pair(fd, iter));
  218. // TODO: use copy_to_user()
  219. pipefd[0] = fd;
  220. iter = files->emplace_back(fs::file {
  221. fs::file::types::pipe,
  222. { .pp = pipe },
  223. nullptr,
  224. 0,
  225. 1,
  226. {
  227. .read = 0,
  228. .write = 1,
  229. },
  230. });
  231. fd = _next_fd();
  232. arr.insert(types::make_pair(fd, iter));
  233. // TODO: use copy_to_user()
  234. pipefd[1] = fd;
  235. return 0;
  236. }
  237. // TODO: file opening permissions check
  238. int open(const char* filename, uint32_t flags)
  239. {
  240. auto* dentry = fs::vfs_open(filename);
  241. if (!dentry) {
  242. errno = ENOTFOUND;
  243. return -1;
  244. }
  245. // check whether dentry is a file if O_DIRECTORY is set
  246. if ((flags & O_DIRECTORY) && !dentry->ind->flags.in.directory) {
  247. errno = ENOTDIR;
  248. return -1;
  249. }
  250. auto iter = files->emplace_back(fs::file {
  251. fs::file::types::ind,
  252. { .ind = dentry->ind },
  253. dentry->parent,
  254. 0,
  255. 1,
  256. {
  257. .read = !!(flags & (O_RDONLY | O_RDWR)),
  258. .write = !!(flags & (O_WRONLY | O_RDWR)),
  259. },
  260. });
  261. int fd = _next_fd();
  262. arr.insert(types::make_pair(fd, iter));
  263. return fd;
  264. }
  265. constexpr void close(int fd)
  266. {
  267. auto iter = arr.find(fd);
  268. if (iter) {
  269. _close(iter->value);
  270. arr.erase(iter);
  271. }
  272. }
  273. constexpr void close_all(void)
  274. {
  275. for (auto iter : this->arr)
  276. close(iter.key);
  277. }
  278. constexpr ~filearr()
  279. {
  280. close_all();
  281. }
  282. };
  283. struct wait_obj {
  284. pid_t pid;
  285. int code;
  286. };
  287. public:
  288. mutable kernel::mm_list mms;
  289. thdlist thds;
  290. kernel::cond_var cv_wait;
  291. types::list<wait_obj> waitlist;
  292. process_attr attr;
  293. filearr files;
  294. types::string<> pwd;
  295. kernel::signal_list signals;
  296. pid_t pid;
  297. pid_t ppid;
  298. pid_t pgid;
  299. pid_t sid;
  300. public:
  301. // if waitlist is not empty or mutex in cv_wait
  302. // is locked, its behavior is undefined
  303. process(process&& val);
  304. process(const process&);
  305. explicit process(pid_t ppid,
  306. bool system = true,
  307. types::string<>&& path = "/",
  308. kernel::signal_list&& sigs = {});
  309. constexpr bool is_system(void) const
  310. {
  311. return attr.system;
  312. }
  313. constexpr bool is_zombie(void) const
  314. {
  315. return attr.zombie;
  316. }
  317. private:
  318. static inline pid_t max_pid;
  319. static inline pid_t alloc_pid(void)
  320. {
  321. return ++max_pid;
  322. }
  323. };
  324. class proclist final {
  325. public:
  326. using list_type = types::map<pid_t, process>;
  327. using child_index_type = types::hash_map<pid_t, types::list<pid_t>, types::linux_hasher<pid_t>>;
  328. using tty_index_type = types::map<pid_t, tty*>;
  329. using iterator_type = list_type::iterator_type;
  330. using const_iterator_type = list_type::const_iterator_type;
  331. private:
  332. list_type m_procs;
  333. child_index_type m_child_idx;
  334. tty_index_type m_tty_idx;
  335. public:
  336. template <typename... Args>
  337. iterator_type emplace(Args&&... args)
  338. {
  339. process _proc(std::forward<Args>(args)...);
  340. auto pid = _proc.pid;
  341. auto ppid = _proc.ppid;
  342. auto iter = m_procs.insert(types::make_pair(pid, std::move(_proc)));
  343. auto children = m_child_idx.find(ppid);
  344. if (!children) {
  345. m_child_idx.emplace(ppid, types::list<pid_t> {});
  346. children = m_child_idx.find(ppid);
  347. }
  348. children->value.push_back(pid);
  349. return iter;
  350. }
  351. constexpr void set_ctrl_tty(pid_t pid, tty* _tty)
  352. {
  353. auto iter = m_tty_idx.find(pid);
  354. _tty->set_pgrp(pid);
  355. if (iter) {
  356. iter->value = _tty;
  357. } else {
  358. m_tty_idx.insert(types::make_pair(pid, _tty));
  359. }
  360. }
  361. constexpr tty* get_ctrl_tty(pid_t pid)
  362. {
  363. auto iter = m_tty_idx.find(pid);
  364. if (!iter)
  365. return nullptr;
  366. return iter->value;
  367. }
  368. constexpr void remove(pid_t pid)
  369. {
  370. make_children_orphans(pid);
  371. auto proc_iter = m_procs.find(pid);
  372. auto ppid = proc_iter->value.ppid;
  373. auto& parent_children = m_child_idx.find(ppid)->value;
  374. auto i = parent_children.find(pid);
  375. parent_children.erase(i);
  376. m_procs.erase(proc_iter);
  377. }
  378. constexpr process* find(pid_t pid)
  379. {
  380. auto iter = m_procs.find(pid);
  381. // TODO: change this
  382. assert(!!iter);
  383. return &iter->value;
  384. }
  385. constexpr bool has_child(pid_t pid)
  386. {
  387. auto children = m_child_idx.find(pid);
  388. return children && !children->value.empty();
  389. }
  390. constexpr void make_children_orphans(pid_t pid)
  391. {
  392. auto children = m_child_idx.find(pid);
  393. if (children) {
  394. auto init_children = m_child_idx.find(1);
  395. for (auto iter = children->value.begin(); iter != children->value.end(); ++iter) {
  396. init_children->value.push_back(*iter);
  397. this->find(*iter)->ppid = 1;
  398. }
  399. m_child_idx.remove(children);
  400. }
  401. }
  402. void send_signal(pid_t pid, kernel::sig_t signal)
  403. {
  404. auto iter = this->find(pid);
  405. if (!iter)
  406. return iter->signals.set(signal);
  407. }
  408. void send_signal_grp(pid_t pgid, kernel::sig_t signal)
  409. {
  410. for (auto& proc : m_procs) {
  411. if (proc.value.pgid == pgid)
  412. proc.value.signals.set(signal);
  413. }
  414. }
  415. void kill(pid_t pid, int exit_code);
  416. };
  417. class readyqueue final {
  418. public:
  419. using list_type = types::list<thread*>;
  420. using iterator_type = list_type::iterator_type;
  421. using const_iterator_type = list_type::const_iterator_type;
  422. private:
  423. list_type m_thds;
  424. private:
  425. readyqueue(const readyqueue&) = delete;
  426. readyqueue(readyqueue&&) = delete;
  427. readyqueue& operator=(const readyqueue&) = delete;
  428. readyqueue& operator=(readyqueue&&) = delete;
  429. ~readyqueue() = delete;
  430. public:
  431. constexpr explicit readyqueue(void) = default;
  432. constexpr void push(thread* thd)
  433. {
  434. m_thds.push_back(thd);
  435. }
  436. constexpr thread* pop(void)
  437. {
  438. auto iter = m_thds.begin();
  439. while (!((*iter)->attr.ready))
  440. iter = m_thds.erase(iter);
  441. auto* ptr = *iter;
  442. m_thds.erase(iter);
  443. return ptr;
  444. }
  445. constexpr thread* query(void)
  446. {
  447. auto* thd = this->pop();
  448. this->push(thd);
  449. return thd;
  450. }
  451. constexpr void remove_all(thread* thd)
  452. {
  453. auto iter = m_thds.find(thd);
  454. while (iter != m_thds.end()) {
  455. m_thds.erase(iter);
  456. iter = m_thds.find(thd);
  457. }
  458. }
  459. };
  460. void NORETURN init_scheduler(void);
  461. /// @return true if returned normally, false if being interrupted
  462. bool schedule(void);
  463. void NORETURN schedule_noreturn(void);
  464. constexpr uint32_t push_stack(uint32_t** stack, uint32_t val)
  465. {
  466. --*stack;
  467. **stack = val;
  468. return val;
  469. }
  470. // class thdlist
  471. constexpr thdlist::~thdlist()
  472. {
  473. for (auto iter = thds.begin(); iter != thds.end(); ++iter)
  474. readythds->remove_all(&iter);
  475. }
  476. void k_new_thread(void (*func)(void*), void* data);
  477. void NORETURN freeze(void);
  478. void NORETURN kill_current(int exit_code);
  479. void check_signal(void);