stdio.c 8.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388
  1. #include <devutil.h>
  2. #include <stdint.h>
  3. #include <stdio.h>
  4. #include <stdarg.h>
  5. #include <string.h>
  6. #include <unistd.h>
  7. // where n is in the range of [0, 9]
  8. static inline char d_to_c(int32_t n)
  9. {
  10. return '0' + n;
  11. }
  12. // where n is between 0 and 15
  13. // base is either 'a' of 'A',
  14. // depending on you want capitalized
  15. // or not
  16. static inline char hex_to_c(int32_t n, char base)
  17. {
  18. if (n < 10) {
  19. // n belongs to [0, 9]
  20. return d_to_c(n);
  21. } else {
  22. // n belongs to [10, 15]
  23. return base + (n - 10);
  24. }
  25. }
  26. static inline char x_to_c(int32_t n)
  27. {
  28. return hex_to_c(n, 'a');
  29. }
  30. static inline char X_to_c(int32_t n)
  31. {
  32. return hex_to_c(n, 'A');
  33. }
  34. // this will check if there is still free space
  35. // in the buffer. if so, push the char into it,
  36. // change the value of buf_size and move pointer
  37. // forward
  38. //
  39. // x: char* buf
  40. // y: size_t buf_size
  41. // z: char c
  42. #define do_write_if_free(x, y, z) \
  43. if ((y) > 1) { \
  44. *((x)++) = (z); \
  45. --(y); \
  46. }
  47. static inline ssize_t
  48. snprint_decimal32(
  49. char* buf,
  50. size_t buf_size,
  51. int32_t num)
  52. {
  53. ssize_t n_write = 0;
  54. if (num < 0) {
  55. do_write_if_free(buf, buf_size, '-');
  56. ++n_write;
  57. num *= (-1);
  58. }
  59. char* orig_buf = buf;
  60. do {
  61. do_write_if_free(buf, buf_size, d_to_c(num % 10));
  62. num /= 10;
  63. ++n_write;
  64. } while (num != 0);
  65. // prepend trailing '\0'
  66. if (buf_size > 0)
  67. *buf = 0x00;
  68. // move buf pointer to the last digit of number
  69. --buf;
  70. // reverse output
  71. while (orig_buf < buf) {
  72. char c = *buf;
  73. *buf = *orig_buf;
  74. *orig_buf = c;
  75. --buf;
  76. ++orig_buf;
  77. }
  78. return n_write;
  79. }
  80. static inline ssize_t
  81. snprint_decimal64(
  82. char* buf,
  83. size_t buf_size,
  84. int64_t num)
  85. {
  86. ssize_t n_write = 0;
  87. if (num < 0) {
  88. do_write_if_free(buf, buf_size, '-');
  89. ++n_write;
  90. num *= (-1);
  91. }
  92. char* orig_buf = buf;
  93. do {
  94. do_write_if_free(buf, buf_size, d_to_c(num % 10));
  95. num /= 10;
  96. ++n_write;
  97. } while (num != 0);
  98. // prepend trailing '\0'
  99. if (buf_size > 0)
  100. *buf = 0x00;
  101. // move buf pointer to the last digit of number
  102. --buf;
  103. // reverse output
  104. while (orig_buf < buf) {
  105. char c = *buf;
  106. *buf = *orig_buf;
  107. *orig_buf = c;
  108. --buf;
  109. ++orig_buf;
  110. }
  111. return n_write;
  112. }
  113. static inline ssize_t
  114. snprint_hex32(
  115. char* buf,
  116. size_t buf_size,
  117. uint32_t num,
  118. int32_t capitalized)
  119. {
  120. ssize_t n_write = 0;
  121. do_write_if_free(buf, buf_size, '0');
  122. if (capitalized) {
  123. do_write_if_free(buf, buf_size, 'X');
  124. } else {
  125. do_write_if_free(buf, buf_size, 'x');
  126. }
  127. n_write += 2;
  128. char* orig_buf = buf;
  129. do {
  130. if (capitalized) {
  131. do_write_if_free(buf, buf_size, X_to_c(num % 16));
  132. } else {
  133. do_write_if_free(buf, buf_size, x_to_c(num % 16));
  134. }
  135. num /= 16;
  136. ++n_write;
  137. } while (num != 0);
  138. // prepend trailing '\0'
  139. if (buf_size > 0)
  140. *buf = 0x00;
  141. // move buf pointer to the last digit of number
  142. --buf;
  143. // reverse output
  144. while (orig_buf < buf) {
  145. char c = *buf;
  146. *buf = *orig_buf;
  147. *orig_buf = c;
  148. --buf;
  149. ++orig_buf;
  150. }
  151. return n_write;
  152. }
  153. static inline ssize_t
  154. snprint_hex64(
  155. char* buf,
  156. size_t buf_size,
  157. uint64_t num,
  158. int32_t capitalized)
  159. {
  160. ssize_t n_write = 0;
  161. do_write_if_free(buf, buf_size, '0');
  162. if (capitalized) {
  163. do_write_if_free(buf, buf_size, 'X');
  164. } else {
  165. do_write_if_free(buf, buf_size, 'x');
  166. }
  167. n_write += 2;
  168. char* orig_buf = buf;
  169. do {
  170. if (capitalized) {
  171. do_write_if_free(buf, buf_size, X_to_c(num % 16));
  172. } else {
  173. do_write_if_free(buf, buf_size, x_to_c(num % 16));
  174. }
  175. num /= 16;
  176. ++n_write;
  177. } while (num != 0);
  178. // prepend trailing '\0'
  179. if (buf_size > 0)
  180. *buf = 0x00;
  181. // move buf pointer to the last digit of number
  182. --buf;
  183. // reverse output
  184. while (orig_buf < buf) {
  185. char c = *buf;
  186. *buf = *orig_buf;
  187. *orig_buf = c;
  188. --buf;
  189. ++orig_buf;
  190. }
  191. return n_write;
  192. }
  193. static inline ssize_t
  194. snprint_char(
  195. char* buf,
  196. size_t buf_size,
  197. char c)
  198. {
  199. if (buf_size > 1)
  200. *buf = c;
  201. return sizeof(c);
  202. }
  203. int snprintf(char* buf, size_t bufsize, const char* fmt, ...)
  204. {
  205. va_list lst;
  206. va_start(lst, fmt);
  207. int ret = vsnprintf(buf, bufsize, fmt, lst);
  208. va_end(lst);
  209. return ret;
  210. }
  211. int vsnprintf(char* buf, size_t buf_size, const char* fmt, va_list arg)
  212. {
  213. ssize_t n_write = 0;
  214. for (char c; (c = *fmt) != 0x00; ++fmt) {
  215. if (c == '%') {
  216. size_t n_tmp_write = 0;
  217. switch (*(++fmt)) {
  218. // int
  219. case 'd':
  220. n_tmp_write = snprint_decimal32(buf, buf_size, va_arg(arg, int));
  221. break;
  222. case 'x':
  223. n_tmp_write = snprint_hex32(buf, buf_size, va_arg(arg, unsigned int), 0);
  224. break;
  225. case 'X':
  226. n_tmp_write = snprint_hex32(buf, buf_size, va_arg(arg, unsigned int), 1);
  227. break;
  228. // long decimal
  229. case 'l':
  230. switch (*(++fmt)) {
  231. // long long aka int64
  232. case 'l':
  233. switch (*(++fmt)) {
  234. case 'd':
  235. n_tmp_write = snprint_decimal64(buf, buf_size, va_arg(arg, long long));
  236. break;
  237. case 'x':
  238. n_tmp_write = snprint_hex64(buf, buf_size, va_arg(arg, unsigned long long), 0);
  239. break;
  240. case 'X':
  241. n_tmp_write = snprint_hex64(buf, buf_size, va_arg(arg, unsigned long long), 1);
  242. break;
  243. }
  244. break;
  245. // long int aka int32
  246. case 'd':
  247. n_tmp_write = snprint_decimal32(buf, buf_size, va_arg(arg, long));
  248. break;
  249. case 'x':
  250. n_tmp_write = snprint_hex32(buf, buf_size, va_arg(arg, unsigned long), 0);
  251. break;
  252. case 'X':
  253. n_tmp_write = snprint_hex32(buf, buf_size, va_arg(arg, unsigned long), 1);
  254. break;
  255. }
  256. break;
  257. // c string
  258. case 's':
  259. n_tmp_write = snprintf(buf, buf_size, va_arg(arg, const char*));
  260. break;
  261. // int8 char
  262. case 'c':
  263. n_tmp_write = snprint_char(buf, buf_size, va_arg(arg, int));
  264. break;
  265. // pointer
  266. case 'p':
  267. #ifdef __32bit_system
  268. n_tmp_write = snprint_hex32(buf, buf_size, va_arg(arg, size_t), 0);
  269. #else
  270. n_tmp_write = snprint_hex64(buf, buf_size, va_arg(arg, size_t), 0);
  271. #endif
  272. break;
  273. default:
  274. n_tmp_write = snprint_char(buf, buf_size, *(fmt - 1));
  275. break;
  276. }
  277. n_write += n_tmp_write;
  278. if (buf_size > 1) {
  279. if (buf_size > n_tmp_write) {
  280. buf += n_tmp_write;
  281. buf_size -= n_tmp_write;
  282. } else {
  283. // no enough space
  284. // shrink buf_size to one
  285. buf += (buf_size - 1);
  286. buf_size = 1;
  287. }
  288. }
  289. } else {
  290. ++n_write;
  291. do_write_if_free(buf, buf_size, c);
  292. }
  293. }
  294. if (buf_size > 0)
  295. *buf = 0x00;
  296. return n_write;
  297. }
  298. int sprintf(char* buf, const char* fmt, ...)
  299. {
  300. va_list lst;
  301. va_start(lst, fmt);
  302. int ret = vsnprintf(buf, __SIZE_MAX__, fmt, lst);
  303. va_end(lst);
  304. return ret;
  305. }
  306. int puts(const char* str)
  307. {
  308. int len = strlen(str);
  309. write(STDOUT_FILENO, str, len);
  310. write(STDOUT_FILENO, "\n", 1);
  311. return len + 1;
  312. }
  313. char* gets(char* buf)
  314. {
  315. int n = read(STDIN_FILENO, buf, __SIZE_MAX__);
  316. if (n > 0) {
  317. if (buf[n-1] == '\n')
  318. buf[n-1] = 0;
  319. else
  320. buf[n] = 0;
  321. return buf;
  322. }
  323. return NULL;
  324. }