mm.hpp 9.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403
  1. #pragma once
  2. #include <set>
  3. #include <vector>
  4. #include <bit>
  5. #include <cstddef>
  6. #include <utility>
  7. #include <kernel/mem.h>
  8. #include <kernel/vfs.hpp>
  9. #include <stdint.h>
  10. #include <types/allocator.hpp>
  11. #include <types/cplusplus.hpp>
  12. #include <types/size.h>
  13. #include <types/status.h>
  14. #include <types/types.h>
  15. #define invalidate_tlb(addr) asm("invlpg (%0)" \
  16. : \
  17. : "r"(addr) \
  18. : "memory")
  19. constexpr size_t THREAD_KERNEL_STACK_SIZE = 2 * PAGE_SIZE;
  20. constexpr uint32_t PAGE_COW = (1 << 0);
  21. constexpr uint32_t PAGE_MMAP = (1 << 1);
  22. #define PAGE_COW PAGE_COW
  23. #define PAGE_MMAP PAGE_MMAP
  24. struct page {
  25. page_t phys_page_id;
  26. size_t* ref_count;
  27. // 0 :11 : pte_index
  28. // 12:31 : pt_page
  29. uint32_t pg_pteidx;
  30. mutable uint32_t attr;
  31. };
  32. // private memory mapping
  33. // changes won't be neither written back to file nor shared between processes
  34. // TODO: shared mapping
  35. // @param len is aligned to 4kb boundary automatically, exceeding part will
  36. // be filled with '0's and not written back to the file
  37. // @param offset MUST be aligned to 4kb
  38. int mmap(
  39. void* hint,
  40. size_t len,
  41. fs::inode* file,
  42. size_t offset,
  43. int write,
  44. int priv);
  45. template <uint32_t base, uint32_t expo>
  46. constexpr uint32_t pow()
  47. {
  48. if constexpr (expo == 0)
  49. return 1;
  50. if constexpr (expo == 1)
  51. return base;
  52. if constexpr (expo % 2 == 0)
  53. return pow<base, expo / 2>() * pow<base, expo / 2>();
  54. else
  55. return pow<base, expo / 2>() * pow<base, expo / 2 + 1>();
  56. }
  57. template <int N>
  58. constexpr uint32_t align_down(uint32_t v)
  59. {
  60. return v & ~(pow<2, N>() - 1);
  61. }
  62. template <int N>
  63. constexpr void* align_down(void* v)
  64. {
  65. return std::bit_cast<void*>(align_down<N>(std::bit_cast<uint32_t>(v)));
  66. }
  67. template <int N>
  68. constexpr uint32_t align_up(uint32_t v)
  69. {
  70. return align_down<N>(v + pow<2, N>() - 1);
  71. }
  72. template <int N>
  73. constexpr void* align_up(void* v)
  74. {
  75. return std::bit_cast<void*>(align_up<N>(std::bit_cast<uint32_t>(v)));
  76. }
  77. constexpr size_t vptrdiff(void* p1, void* p2)
  78. {
  79. auto* _p1 = static_cast<std::byte*>(p1);
  80. auto* _p2 = static_cast<std::byte*>(p2);
  81. return _p1 - _p2;
  82. }
  83. constexpr void* vptradd(void* p, std::size_t off)
  84. {
  85. auto* _p = static_cast<std::byte*>(p);
  86. return _p + off;
  87. }
  88. void dealloc_pd(page_t pd);
  89. // allocate a struct page together with the raw page
  90. page allocate_page(void);
  91. void free_page(page* pg);
  92. // TODO: this is for alloc_kstack()
  93. // CHANGE THIS
  94. page_t __alloc_raw_page(void);
  95. void __free_raw_page(page_t pg);
  96. namespace kernel {
  97. void* pmap(page_t pg);
  98. void pfree(page_t pg);
  99. class paccess : public types::non_copyable {
  100. private:
  101. page_t m_pg;
  102. void* m_ptr;
  103. public:
  104. paccess(void) = delete;
  105. paccess(paccess&&) = delete;
  106. paccess& operator=(paccess&&) = delete;
  107. constexpr explicit paccess(page_t pg)
  108. : m_pg(pg)
  109. {
  110. m_ptr = pmap(pg);
  111. }
  112. constexpr void* ptr(void) const
  113. {
  114. return m_ptr;
  115. }
  116. ~paccess()
  117. {
  118. pfree(m_pg);
  119. }
  120. };
  121. namespace memory {
  122. struct mm {
  123. public:
  124. using pages_vector = std::vector<page,
  125. types::allocator_adapter<page, types::kernel_ident_allocator>>;
  126. public:
  127. void* start {};
  128. struct mm_attr {
  129. uint32_t write : 1;
  130. uint32_t system : 1;
  131. uint32_t mapped : 1;
  132. } attr {};
  133. pages_vector* pgs {};
  134. fs::inode* mapped_file {};
  135. size_t file_offset {};
  136. public:
  137. constexpr void* end() const noexcept
  138. { return vptradd(start, pgs->size() * PAGE_SIZE); }
  139. constexpr bool is_kernel_space() const noexcept
  140. { return attr.system; }
  141. constexpr bool is_avail(void* ostart, void* oend) const noexcept
  142. {
  143. void* m_start = start;
  144. void* m_end = end();
  145. return (ostart >= m_end || oend <= m_start);
  146. }
  147. void append_page(pd_t pd, const page& pg, uint32_t attr, bool priv);
  148. /**
  149. * @brief Splits the memory block at the specified address.
  150. *
  151. * @param addr The address at which the memory block will be split.
  152. * @return The new memory block created after splitting.
  153. */
  154. mm split(void* addr);
  155. constexpr bool operator<(const mm& rhs) const noexcept
  156. { return end() <= rhs.start; }
  157. constexpr bool operator<(void* rhs) const noexcept
  158. { return end() <= rhs; }
  159. friend constexpr bool operator<(void* lhs, const mm& rhs) noexcept
  160. { return lhs < rhs.start; }
  161. };
  162. class mm_list {
  163. private:
  164. struct comparator {
  165. constexpr bool operator()(const mm& lhs, const mm& rhs) const noexcept
  166. { return lhs < rhs; }
  167. constexpr bool operator()(const mm& lhs, void* rhs) const noexcept
  168. { return lhs < rhs; }
  169. constexpr bool operator()(void* lhs, const mm& rhs) const noexcept
  170. { return lhs < rhs; }
  171. };
  172. public:
  173. using list_type = std::set<mm, comparator,
  174. types::allocator_adapter<mm, types::kernel_ident_allocator>>;
  175. using iterator = list_type::iterator;
  176. using const_iterator = list_type::const_iterator;
  177. public:
  178. static inline mm_list* s_kernel_mms;
  179. private:
  180. list_type m_areas;
  181. page_t m_pd;
  182. mm* m_brk {};
  183. public:
  184. // for system initialization only
  185. explicit constexpr mm_list(page_t pd)
  186. : m_pd(pd) { }
  187. // default constructor copies kernel_mms
  188. explicit mm_list();
  189. // copies kernel_mms and mirrors user space
  190. explicit mm_list(const mm_list& other);
  191. constexpr mm_list(mm_list&& v)
  192. : m_areas(std::move(v.m_areas))
  193. , m_pd(std::exchange(v.m_pd, 0)) { }
  194. ~mm_list();
  195. void switch_pd() const;
  196. int register_brk(void* addr);
  197. void* set_brk(void* addr);
  198. void* find_avail(void* hint, size_t len, bool priv) const;
  199. int unmap(void* start, size_t len, bool priv);
  200. constexpr mm& addarea(void* start, bool w, bool system)
  201. {
  202. auto [ iter, inserted ] = m_areas.emplace(mm {
  203. .start = start,
  204. .attr {
  205. .write = w,
  206. .system = system,
  207. .mapped = 0,
  208. },
  209. .pgs = types::_new<types::kernel_ident_allocator, mm::pages_vector>(),
  210. });
  211. assert(inserted);
  212. return *iter;
  213. }
  214. mm& add_empty_area(void* start, std::size_t page_count,
  215. uint32_t page_attr, bool w, bool system);
  216. constexpr void clear_user()
  217. {
  218. for (auto iter = m_areas.begin(); iter != m_areas.end(); ) {
  219. if (iter->is_kernel_space()) {
  220. ++iter;
  221. continue;
  222. }
  223. this->unmap(*iter);
  224. iter = m_areas.erase(iter);
  225. }
  226. m_brk = nullptr;
  227. }
  228. inline void unmap(mm& area)
  229. {
  230. int i = 0;
  231. // TODO:
  232. // if there are more than 4 pages, calling invlpg
  233. // should be faster. otherwise, we use movl cr3
  234. // bool should_invlpg = (area->pgs->size() > 4);
  235. for (auto& pg : *area.pgs) {
  236. kernel::paccess pa(pg.pg_pteidx >> 12);
  237. auto pt = (pt_t)pa.ptr();
  238. assert(pt);
  239. auto* pte = *pt + (pg.pg_pteidx & 0xfff);
  240. pte->v = 0;
  241. free_page(&pg);
  242. invalidate_tlb((uint32_t)area.start + (i++) * PAGE_SIZE);
  243. }
  244. types::pdelete<types::kernel_ident_allocator>(area.pgs);
  245. }
  246. constexpr mm* find(void* lp)
  247. {
  248. auto iter = m_areas.find(lp);
  249. if (iter == m_areas.end())
  250. return nullptr;
  251. return &*iter;
  252. }
  253. constexpr const mm* find(void* lp) const
  254. {
  255. auto iter = m_areas.find(lp);
  256. if (iter == m_areas.end())
  257. return nullptr;
  258. return &*iter;
  259. }
  260. constexpr bool is_avail(void* start, size_t len) const noexcept
  261. {
  262. start = align_down<12>(start);
  263. len = vptrdiff(align_up<12>(vptradd(start, len)), start);
  264. for (const auto& area : m_areas) {
  265. if (!area.is_avail(start, vptradd(start, len)))
  266. return false;
  267. }
  268. return true;
  269. }
  270. constexpr bool is_avail(void* addr) const
  271. {
  272. auto iter = m_areas.find(addr);
  273. return iter == m_areas.end();
  274. }
  275. };
  276. } // namespace memory
  277. } // namespace kernel
  278. // global variables
  279. inline page empty_page;
  280. // --------------------------------
  281. // inline constexpr page* lto_page(mm* mm_area, void* l_ptr)
  282. // {
  283. // size_t offset = vptrdiff(l_ptr, mm_area->start);
  284. // return &mm_area->pgs->at(offset / PAGE_SIZE);
  285. // }
  286. // inline constexpr page_t to_page(pptr_t ptr)
  287. // {
  288. // return ptr >> 12;
  289. // }
  290. // inline constexpr size_t to_pdi(page_t pg)
  291. // {
  292. // return pg >> 10;
  293. // }
  294. // inline constexpr size_t to_pti(page_t pg)
  295. // {
  296. // return pg & (1024 - 1);
  297. // }
  298. // inline constexpr pptr_t to_pp(page_t p)
  299. // {
  300. // return p << 12;
  301. // }
  302. constexpr size_t v_to_pdi(void* addr)
  303. {
  304. return std::bit_cast<uint32_t>(addr) >> 22;
  305. }
  306. constexpr size_t v_to_pti(void* addr)
  307. {
  308. return (std::bit_cast<uint32_t>(addr) >> 12) & 0x3ff;
  309. }
  310. // inline constexpr pte_t* to_pte(pt_t pt, page_t pg)
  311. // {
  312. // return *pt + to_pti(pg);
  313. // }
  314. // inline void* to_vp(page_t pg)
  315. // {
  316. // return ptovp(to_pp(pg));
  317. // }
  318. // inline pd_t to_pd(page_t pg)
  319. // {
  320. // return reinterpret_cast<pd_t>(to_vp(pg));
  321. // }
  322. // inline pt_t to_pt(page_t pg)
  323. // {
  324. // return reinterpret_cast<pt_t>(to_vp(pg));
  325. // }
  326. // inline pt_t to_pt(pde_t* pde)
  327. // {
  328. // return to_pt(pde->in.pt_page);
  329. // }
  330. // inline pde_t* to_pde(pd_t pd, void* addr)
  331. // {
  332. // return *pd + lto_pdi((pptr_t)addr);
  333. // }
  334. // inline pte_t* to_pte(pt_t pt, void* addr)
  335. // {
  336. // return *pt + lto_pti((pptr_t)addr);
  337. // }
  338. // inline pte_t* to_pte(pde_t* pde, void* addr)
  339. // {
  340. // return to_pte(to_pt(pde), addr);
  341. // }
  342. // inline pte_t* to_pte(pd_t pd, void* addr)
  343. // {
  344. // return to_pte(to_pde(pd, addr), addr);
  345. // }
  346. // inline pte_t* to_pte(pde_t* pde, page_t pg)
  347. // {
  348. // return to_pte(to_pt(pde), pg);
  349. // }