mm.hpp 7.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321
  1. #pragma once
  2. #include <kernel/mem.h>
  3. #include <kernel/vfs.hpp>
  4. #include <types/allocator.hpp>
  5. #include <types/cplusplus.hpp>
  6. #include <types/list.hpp>
  7. #include <types/size.h>
  8. #include <types/status.h>
  9. #include <types/types.h>
  10. #include <types/vector.hpp>
  11. #define invalidate_tlb(addr) asm("invlpg (%0)" \
  12. : \
  13. : "r"(addr) \
  14. : "memory")
  15. constexpr size_t THREAD_KERNEL_STACK_SIZE = 2 * PAGE_SIZE;
  16. struct page {
  17. page_t phys_page_id;
  18. pte_t* pte;
  19. size_t* ref_count;
  20. union {
  21. uint32_t v;
  22. struct {
  23. uint32_t cow : 1;
  24. } in;
  25. } attr;
  26. };
  27. // private memory mapping
  28. // changes won't be neither written back to file nor shared between processes
  29. // TODO: shared mapping
  30. // @param len is aligned to 4kb boundary automatically, exceeding part will
  31. // be filled with '0's and not written back to the file
  32. int mmap(
  33. void* hint,
  34. size_t len,
  35. fs::inode* file,
  36. size_t offset,
  37. int write,
  38. int priv);
  39. using page_arr = types::vector<page, types::kernel_ident_allocator>;
  40. // allocate n raw page(s)
  41. // @return the id of the first page allocated
  42. page_t alloc_n_raw_pages(size_t n);
  43. void free_n_raw_pages(page_t start_pg, size_t n);
  44. // forward declaration
  45. namespace kernel {
  46. class mm_list;
  47. } // namespace kernel
  48. struct mm {
  49. public:
  50. void* start;
  51. union {
  52. uint32_t v;
  53. struct {
  54. uint32_t read : 1;
  55. uint32_t write : 1;
  56. uint32_t system : 1;
  57. } in;
  58. } attr;
  59. kernel::mm_list* owner;
  60. page_arr* pgs = nullptr;
  61. fs::inode* mapped_file = nullptr;
  62. size_t file_offset = 0;
  63. public:
  64. constexpr void* end(void) const
  65. {
  66. return (char*)this->start + this->pgs->size() * PAGE_SIZE;
  67. }
  68. inline bool is_ident(void) const
  69. {
  70. return this->end() <= (void*)0x40000000U;
  71. }
  72. constexpr bool is_avail(void* start, void* end) const
  73. {
  74. void* m_start = this->start;
  75. void* m_end = this->end();
  76. return (start >= m_end || end <= m_start);
  77. }
  78. int append_page(page* pg, bool present, bool write, bool priv, bool cow);
  79. };
  80. namespace kernel {
  81. class mm_list {
  82. public:
  83. using list_type = ::types::list<mm, types::kernel_ident_allocator>;
  84. using iterator_type = list_type::iterator_type;
  85. using const_iterator_type = list_type::const_iterator_type;
  86. private:
  87. list_type m_areas;
  88. public:
  89. pd_t m_pd;
  90. public:
  91. explicit mm_list(pd_t pd);
  92. mm_list(const mm_list& v);
  93. constexpr mm_list(mm_list&& v)
  94. : m_areas(::types::move(v.m_areas))
  95. , m_pd(v.m_pd)
  96. {
  97. v.m_pd = nullptr;
  98. }
  99. ~mm_list();
  100. constexpr iterator_type begin(void)
  101. {
  102. return m_areas.begin();
  103. }
  104. constexpr iterator_type end(void)
  105. {
  106. return m_areas.end();
  107. }
  108. constexpr const_iterator_type begin(void) const
  109. {
  110. return m_areas.begin();
  111. }
  112. constexpr const_iterator_type end(void) const
  113. {
  114. return m_areas.end();
  115. }
  116. constexpr const_iterator_type cbegin(void) const
  117. {
  118. return m_areas.cbegin();
  119. }
  120. constexpr const_iterator_type cend(void) const
  121. {
  122. return m_areas.cend();
  123. }
  124. constexpr iterator_type addarea(void* start, bool w, bool system)
  125. {
  126. return m_areas.emplace_back(mm {
  127. .start = start,
  128. .attr {
  129. .in {
  130. .read = 1,
  131. .write = w,
  132. .system = system,
  133. },
  134. },
  135. .owner = this,
  136. .pgs = ::types::kernel_ident_allocator_new<page_arr>(),
  137. });
  138. }
  139. constexpr void clear_user()
  140. {
  141. for (auto iter = this->begin(); iter != this->end();) {
  142. if (iter->is_ident())
  143. ++iter;
  144. // TODO:
  145. // k_unmap(iter.ptr());
  146. iter = m_areas.erase(iter);
  147. }
  148. }
  149. constexpr int mirror_area(mm& src)
  150. {
  151. auto area = this->addarea(
  152. src.start, src.attr.in.write, src.attr.in.system);
  153. if (src.mapped_file) {
  154. area->mapped_file = src.mapped_file;
  155. area->file_offset = src.file_offset;
  156. }
  157. for (auto& pg : *src.pgs) {
  158. if (area->append_page(&pg,
  159. true,
  160. src.attr.in.write,
  161. src.attr.in.system,
  162. true)
  163. != GB_OK) {
  164. return GB_FAILED;
  165. }
  166. }
  167. return GB_OK;
  168. }
  169. constexpr void unmap(iterator_type area)
  170. {
  171. for (auto& pg : *area->pgs) {
  172. if (*pg.ref_count == 1) {
  173. ki_free(pg.ref_count);
  174. free_n_raw_pages(pg.phys_page_id, 1);
  175. } else {
  176. --*pg.ref_count;
  177. }
  178. pg.phys_page_id = 0;
  179. pg.attr.v = 0;
  180. pg.pte->v = 0;
  181. }
  182. area->attr.v = 0;
  183. area->start = 0;
  184. }
  185. constexpr iterator_type find(void* lp)
  186. {
  187. for (auto iter = this->begin(); iter != this->end(); ++iter)
  188. if (lp >= iter->start && lp < iter->end())
  189. return iter;
  190. return this->end();
  191. }
  192. };
  193. } // namespace kernel
  194. // global variables
  195. inline kernel::mm_list* kernel_mms;
  196. inline page empty_page;
  197. // --------------------------------
  198. // translate physical address to virtual(mapped) address
  199. void* ptovp(pptr_t p_ptr);
  200. inline constexpr size_t vptrdiff(void* p1, void* p2)
  201. {
  202. return (uint8_t*)p1 - (uint8_t*)p2;
  203. }
  204. inline constexpr page* lto_page(mm* mm_area, void* l_ptr)
  205. {
  206. size_t offset = vptrdiff(l_ptr, mm_area->start);
  207. return &mm_area->pgs->at(offset / PAGE_SIZE);
  208. }
  209. inline constexpr page_t to_page(pptr_t ptr)
  210. {
  211. return ptr >> 12;
  212. }
  213. inline constexpr size_t to_pdi(page_t pg)
  214. {
  215. return pg >> 10;
  216. }
  217. inline constexpr size_t to_pti(page_t pg)
  218. {
  219. return pg & (1024 - 1);
  220. }
  221. inline constexpr pptr_t to_pp(page_t p)
  222. {
  223. return p << 12;
  224. }
  225. inline constexpr size_t lto_pdi(pptr_t ptr)
  226. {
  227. return to_pdi(to_page(ptr));
  228. }
  229. inline constexpr size_t lto_pti(pptr_t ptr)
  230. {
  231. return to_pti(to_page(ptr));
  232. }
  233. inline constexpr pte_t* to_pte(pt_t pt, page_t pg)
  234. {
  235. return *pt + to_pti(pg);
  236. }
  237. inline void* to_vp(page_t pg)
  238. {
  239. return ptovp(to_pp(pg));
  240. }
  241. inline pd_t to_pd(page_t pg)
  242. {
  243. return reinterpret_cast<pd_t>(to_vp(pg));
  244. }
  245. inline pt_t to_pt(page_t pg)
  246. {
  247. return reinterpret_cast<pt_t>(to_vp(pg));
  248. }
  249. inline pt_t to_pt(pde_t* pde)
  250. {
  251. return to_pt(pde->in.pt_page);
  252. }
  253. inline pde_t* to_pde(pd_t pd, void* addr)
  254. {
  255. return *pd + lto_pdi((pptr_t)addr);
  256. }
  257. inline pte_t* to_pte(pt_t pt, void* addr)
  258. {
  259. return *pt + lto_pti((pptr_t)addr);
  260. }
  261. inline pte_t* to_pte(pde_t* pde, void* addr)
  262. {
  263. return to_pte(to_pt(pde), addr);
  264. }
  265. inline pte_t* to_pte(pd_t pd, void* addr)
  266. {
  267. return to_pte(to_pde(pd, addr), addr);
  268. }
  269. inline pte_t* to_pte(pde_t* pde, page_t pg)
  270. {
  271. return to_pte(to_pt(pde), pg);
  272. }
  273. // allocate a raw page
  274. inline page_t alloc_raw_page(void)
  275. {
  276. return alloc_n_raw_pages(1);
  277. }
  278. // allocate a struct page together with the raw page
  279. struct page allocate_page(void);
  280. pd_t alloc_pd(void);
  281. pt_t alloc_pt(void);
  282. void dealloc_pd(pd_t pd);
  283. void dealloc_pt(pt_t pt);