mm.hpp 9.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401
  1. #pragma once
  2. #include <set>
  3. #include <vector>
  4. #include <bit>
  5. #include <cstddef>
  6. #include <utility>
  7. #include <kernel/mem.h>
  8. #include <kernel/vfs.hpp>
  9. #include <stdint.h>
  10. #include <types/allocator.hpp>
  11. #include <types/cplusplus.hpp>
  12. #include <types/size.h>
  13. #include <types/status.h>
  14. #include <types/types.h>
  15. #define invalidate_tlb(addr) asm volatile("invlpg (%0)" \
  16. : \
  17. : "r"(addr) \
  18. : "memory")
  19. constexpr size_t THREAD_KERNEL_STACK_SIZE = 8 * PAGE_SIZE;
  20. constexpr uint32_t PAGE_COW = (1 << 0);
  21. constexpr uint32_t PAGE_MMAP = (1 << 1);
  22. #define PAGE_COW PAGE_COW
  23. #define PAGE_MMAP PAGE_MMAP
  24. struct page {
  25. page_t phys_page_id;
  26. size_t* ref_count;
  27. // 0 :11 : pte_index
  28. // 12:31 : pt_page
  29. uint32_t pg_pteidx;
  30. mutable uint32_t attr;
  31. };
  32. // private memory mapping
  33. // changes won't be neither written back to file nor shared between processes
  34. // TODO: shared mapping
  35. // @param len is aligned to 4kb boundary automatically, exceeding part will
  36. // be filled with '0's and not written back to the file
  37. // @param offset MUST be aligned to 4kb
  38. int mmap(
  39. void* hint,
  40. size_t len,
  41. fs::inode* file,
  42. size_t offset,
  43. int write,
  44. int priv);
  45. template <uint32_t base, uint32_t expo>
  46. constexpr uint32_t pow()
  47. {
  48. if constexpr (expo == 0)
  49. return 1;
  50. if constexpr (expo == 1)
  51. return base;
  52. if constexpr (expo % 2 == 0)
  53. return pow<base, expo / 2>() * pow<base, expo / 2>();
  54. else
  55. return pow<base, expo / 2>() * pow<base, expo / 2 + 1>();
  56. }
  57. template <int N>
  58. constexpr uint32_t align_down(uint32_t v)
  59. {
  60. return v & ~(pow<2, N>() - 1);
  61. }
  62. template <int N>
  63. constexpr void* align_down(void* v)
  64. {
  65. return std::bit_cast<void*>(align_down<N>(std::bit_cast<uint32_t>(v)));
  66. }
  67. template <int N>
  68. constexpr uint32_t align_up(uint32_t v)
  69. {
  70. return align_down<N>(v + pow<2, N>() - 1);
  71. }
  72. template <int N>
  73. constexpr void* align_up(void* v)
  74. {
  75. return std::bit_cast<void*>(align_up<N>(std::bit_cast<uint32_t>(v)));
  76. }
  77. constexpr size_t vptrdiff(void* p1, void* p2)
  78. {
  79. auto* _p1 = static_cast<std::byte*>(p1);
  80. auto* _p2 = static_cast<std::byte*>(p2);
  81. return _p1 - _p2;
  82. }
  83. constexpr void* vptradd(void* p, std::size_t off)
  84. {
  85. auto* _p = static_cast<std::byte*>(p);
  86. return _p + off;
  87. }
  88. void dealloc_pd(page_t pd);
  89. // allocate a struct page together with the raw page
  90. page allocate_page(void);
  91. void free_page(page* pg);
  92. // TODO: this is for alloc_kstack()
  93. // CHANGE THIS
  94. page_t __alloc_raw_page(void);
  95. void __free_raw_page(page_t pg);
  96. namespace kernel {
  97. void* pmap(page_t pg, bool cached = true);
  98. void pfree(page_t pg);
  99. class paccess : public types::non_copyable {
  100. private:
  101. page_t m_pg;
  102. void* m_ptr;
  103. public:
  104. paccess(void) = delete;
  105. paccess(paccess&&) = delete;
  106. paccess& operator=(paccess&&) = delete;
  107. constexpr explicit paccess(page_t pg, bool cached = true)
  108. : m_pg(pg)
  109. {
  110. m_ptr = pmap(pg, cached);
  111. }
  112. constexpr void* ptr(void) const
  113. {
  114. return m_ptr;
  115. }
  116. ~paccess()
  117. {
  118. pfree(m_pg);
  119. }
  120. };
  121. namespace memory {
  122. struct mm {
  123. public:
  124. using pages_vector = std::vector<page, types::memory::ident_allocator<page>>;
  125. public:
  126. void* start {};
  127. struct mm_attr {
  128. uint32_t write : 1;
  129. uint32_t system : 1;
  130. uint32_t mapped : 1;
  131. } attr {};
  132. pages_vector* pgs {};
  133. fs::inode* mapped_file {};
  134. size_t file_offset {};
  135. public:
  136. constexpr void* end() const noexcept
  137. { return vptradd(start, pgs->size() * PAGE_SIZE); }
  138. constexpr bool is_kernel_space() const noexcept
  139. { return attr.system; }
  140. constexpr bool is_avail(void* ostart, void* oend) const noexcept
  141. {
  142. void* m_start = start;
  143. void* m_end = end();
  144. return (ostart >= m_end || oend <= m_start);
  145. }
  146. void append_page(pd_t pd, const page& pg, uint32_t attr, bool priv);
  147. /**
  148. * @brief Splits the memory block at the specified address.
  149. *
  150. * @param addr The address at which the memory block will be split.
  151. * @return The new memory block created after splitting.
  152. */
  153. mm split(void* addr);
  154. constexpr bool operator<(const mm& rhs) const noexcept
  155. { return end() <= rhs.start; }
  156. constexpr bool operator<(void* rhs) const noexcept
  157. { return end() <= rhs; }
  158. friend constexpr bool operator<(void* lhs, const mm& rhs) noexcept
  159. { return lhs < rhs.start; }
  160. };
  161. class mm_list {
  162. private:
  163. struct comparator {
  164. constexpr bool operator()(const mm& lhs, const mm& rhs) const noexcept
  165. { return lhs < rhs; }
  166. constexpr bool operator()(const mm& lhs, void* rhs) const noexcept
  167. { return lhs < rhs; }
  168. constexpr bool operator()(void* lhs, const mm& rhs) const noexcept
  169. { return lhs < rhs; }
  170. };
  171. public:
  172. using list_type = std::set<mm, comparator, types::memory::ident_allocator<mm>>;
  173. using iterator = list_type::iterator;
  174. using const_iterator = list_type::const_iterator;
  175. public:
  176. static inline mm_list* s_kernel_mms;
  177. private:
  178. list_type m_areas;
  179. page_t m_pd;
  180. mm* m_brk {};
  181. public:
  182. // for system initialization only
  183. explicit constexpr mm_list(page_t pd)
  184. : m_pd(pd) { }
  185. // default constructor copies kernel_mms
  186. explicit mm_list();
  187. // copies kernel_mms and mirrors user space
  188. explicit mm_list(const mm_list& other);
  189. constexpr mm_list(mm_list&& v)
  190. : m_areas(std::move(v.m_areas))
  191. , m_pd(std::exchange(v.m_pd, 0)) { }
  192. ~mm_list();
  193. void switch_pd() const;
  194. int register_brk(void* addr);
  195. void* set_brk(void* addr);
  196. void* find_avail(void* hint, size_t len, bool priv) const;
  197. int unmap(void* start, size_t len, bool priv);
  198. constexpr mm& addarea(void* start, bool w, bool system)
  199. {
  200. auto [ iter, inserted ] = m_areas.emplace(mm {
  201. .start = start,
  202. .attr {
  203. .write = w,
  204. .system = system,
  205. .mapped = 0,
  206. },
  207. .pgs = types::memory::kinew<mm::pages_vector>(),
  208. });
  209. assert(inserted);
  210. return *iter;
  211. }
  212. mm& add_empty_area(void* start, std::size_t page_count,
  213. uint32_t page_attr, bool w, bool system);
  214. constexpr void clear_user()
  215. {
  216. for (auto iter = m_areas.begin(); iter != m_areas.end(); ) {
  217. if (iter->is_kernel_space()) {
  218. ++iter;
  219. continue;
  220. }
  221. this->unmap(*iter);
  222. iter = m_areas.erase(iter);
  223. }
  224. m_brk = nullptr;
  225. }
  226. inline void unmap(mm& area)
  227. {
  228. int i = 0;
  229. // TODO:
  230. // if there are more than 4 pages, calling invlpg
  231. // should be faster. otherwise, we use movl cr3
  232. // bool should_invlpg = (area->pgs->size() > 4);
  233. for (auto& pg : *area.pgs) {
  234. kernel::paccess pa(pg.pg_pteidx >> 12);
  235. auto pt = (pt_t)pa.ptr();
  236. assert(pt);
  237. auto* pte = *pt + (pg.pg_pteidx & 0xfff);
  238. pte->v = 0;
  239. free_page(&pg);
  240. invalidate_tlb((uint32_t)area.start + (i++) * PAGE_SIZE);
  241. }
  242. types::memory::kidelete<mm::pages_vector>(area.pgs);
  243. }
  244. constexpr mm* find(void* lp)
  245. {
  246. auto iter = m_areas.find(lp);
  247. if (iter == m_areas.end())
  248. return nullptr;
  249. return &*iter;
  250. }
  251. constexpr const mm* find(void* lp) const
  252. {
  253. auto iter = m_areas.find(lp);
  254. if (iter == m_areas.end())
  255. return nullptr;
  256. return &*iter;
  257. }
  258. constexpr bool is_avail(void* start, size_t len) const noexcept
  259. {
  260. start = align_down<12>(start);
  261. len = vptrdiff(align_up<12>(vptradd(start, len)), start);
  262. for (const auto& area : m_areas) {
  263. if (!area.is_avail(start, vptradd(start, len)))
  264. return false;
  265. }
  266. return true;
  267. }
  268. constexpr bool is_avail(void* addr) const
  269. {
  270. auto iter = m_areas.find(addr);
  271. return iter == m_areas.end();
  272. }
  273. };
  274. } // namespace memory
  275. } // namespace kernel
  276. // global variables
  277. inline page empty_page;
  278. // --------------------------------
  279. // inline constexpr page* lto_page(mm* mm_area, void* l_ptr)
  280. // {
  281. // size_t offset = vptrdiff(l_ptr, mm_area->start);
  282. // return &mm_area->pgs->at(offset / PAGE_SIZE);
  283. // }
  284. // inline constexpr page_t to_page(pptr_t ptr)
  285. // {
  286. // return ptr >> 12;
  287. // }
  288. // inline constexpr size_t to_pdi(page_t pg)
  289. // {
  290. // return pg >> 10;
  291. // }
  292. // inline constexpr size_t to_pti(page_t pg)
  293. // {
  294. // return pg & (1024 - 1);
  295. // }
  296. // inline constexpr pptr_t to_pp(page_t p)
  297. // {
  298. // return p << 12;
  299. // }
  300. constexpr size_t v_to_pdi(void* addr)
  301. {
  302. return std::bit_cast<uint32_t>(addr) >> 22;
  303. }
  304. constexpr size_t v_to_pti(void* addr)
  305. {
  306. return (std::bit_cast<uint32_t>(addr) >> 12) & 0x3ff;
  307. }
  308. // inline constexpr pte_t* to_pte(pt_t pt, page_t pg)
  309. // {
  310. // return *pt + to_pti(pg);
  311. // }
  312. // inline void* to_vp(page_t pg)
  313. // {
  314. // return ptovp(to_pp(pg));
  315. // }
  316. // inline pd_t to_pd(page_t pg)
  317. // {
  318. // return reinterpret_cast<pd_t>(to_vp(pg));
  319. // }
  320. // inline pt_t to_pt(page_t pg)
  321. // {
  322. // return reinterpret_cast<pt_t>(to_vp(pg));
  323. // }
  324. // inline pt_t to_pt(pde_t* pde)
  325. // {
  326. // return to_pt(pde->in.pt_page);
  327. // }
  328. // inline pde_t* to_pde(pd_t pd, void* addr)
  329. // {
  330. // return *pd + lto_pdi((pptr_t)addr);
  331. // }
  332. // inline pte_t* to_pte(pt_t pt, void* addr)
  333. // {
  334. // return *pt + lto_pti((pptr_t)addr);
  335. // }
  336. // inline pte_t* to_pte(pde_t* pde, void* addr)
  337. // {
  338. // return to_pte(to_pt(pde), addr);
  339. // }
  340. // inline pte_t* to_pte(pd_t pd, void* addr)
  341. // {
  342. // return to_pte(to_pde(pd, addr), addr);
  343. // }
  344. // inline pte_t* to_pte(pde_t* pde, page_t pg)
  345. // {
  346. // return to_pte(to_pt(pde), pg);
  347. // }