123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299 |
- #include <types/allocator.hpp>
- #include <bit>
- #include <cstddef>
- #include <assert.h>
- #include <stdint.h>
- #include <kernel/async/lock.hpp>
- #include <kernel/mem/paging.hpp>
- #include <kernel/mem/slab.hpp>
- constexpr uintptr_t KERNEL_HEAP_START = 0xffff'ff81'8000'0000;
- constexpr uintptr_t KERNEL_HEAP_END = 0xffff'ffbf'ffff'ffff;
- constexpr uintptr_t KERNEL_HEAP_SIZE = KERNEL_HEAP_END - KERNEL_HEAP_START;
- namespace types::memory {
- struct mem_blk_flags {
- unsigned long is_free : 8;
- unsigned long has_next : 8;
- };
- struct mem_blk {
- std::size_t size;
- mem_blk_flags flags;
- // the first byte of the memory space
- // the minimal allocated space is 8 bytes
- std::byte data[];
- };
- constexpr std::byte* aspbyte(void* pblk)
- { return std::bit_cast<std::byte*>(pblk);}
- constexpr mem_blk* aspblk(void* pbyte)
- { return std::bit_cast<mem_blk*>(pbyte);}
- constexpr mem_blk* next(mem_blk* blk, std::size_t blk_size)
- {
- auto* p = aspbyte(blk);
- p += sizeof(mem_blk);
- p += blk_size;
- return aspblk(p);
- }
- // blk MUST be free
- constexpr void unite_afterwards(mem_blk* blk)
- {
- while (blk->flags.has_next) {
- auto* blk_next = next(blk, blk->size);
- if (!blk_next->flags.is_free)
- break;
- blk->size += sizeof(mem_blk) + blk_next->size;
- blk->flags.has_next = blk_next->flags.has_next;
- }
- }
- // @param start_pos position where to start finding
- // @param size the size of the block we're looking for
- // @return found block if suitable block exists, if not, the last block
- constexpr mem_blk* find_blk(std::byte** p_start, std::size_t size)
- {
- mem_blk* start_pos = aspblk(*p_start);
- bool no_free_so_far = true;
- while (true) {
- if (start_pos->flags.is_free) {
- unite_afterwards(start_pos);
- no_free_so_far = false;
- if (start_pos->size >= size)
- break;
- }
- if (no_free_so_far)
- *p_start = aspbyte(start_pos);
- if (!start_pos->flags.has_next)
- break;
- start_pos = next(start_pos, start_pos->size);
- }
- return start_pos;
- }
- constexpr void split_block(mem_blk* blk, std::size_t this_size)
- {
- // block is too small to get split
- // that is, the block to be split should have enough room
- // for "this_size" bytes and also could contain a new block
- if (blk->size < this_size + sizeof(mem_blk) + 1024)
- return;
- mem_blk* blk_next = next(blk, this_size);
- blk_next->size = blk->size
- - this_size
- - sizeof(mem_blk);
- blk_next->flags.has_next = blk->flags.has_next;
- blk_next->flags.is_free = 1;
- blk->flags.has_next = 1;
- blk->size = this_size;
- }
- std::byte* brk_memory_allocator::brk(byte* addr)
- {
- if (addr >= p_limit)
- return nullptr;
- uintptr_t current_allocated = reinterpret_cast<uintptr_t>(p_allocated);
- uintptr_t new_brk = reinterpret_cast<uintptr_t>(addr);
- current_allocated &= ~(0x200000-1);
- new_brk &= ~(0x200000-1);
- using namespace kernel::mem::paging;
- while (current_allocated <= new_brk) {
- auto idx = idx_all(current_allocated);
- auto pdpt = KERNEL_PAGE_TABLE[std::get<1>(idx)].parse();
- auto pdpte = pdpt[std::get<2>(idx)];
- if (!pdpte.pfn())
- pdpte.set(PA_KERNEL_PAGE_TABLE, alloc_page_table());
- auto pde = pdpte.parse()[std::get<3>(idx)];
- assert(!(pde.attributes() & PA_P));
- pde.set(PA_KERNEL_DATA_HUGE, page_to_pfn(alloc_pages(9)));
- current_allocated += 0x200000;
- }
- p_allocated = (std::byte*)current_allocated;
- return p_break = addr;
- }
- std::byte* brk_memory_allocator::sbrk(size_type increment)
- {
- return brk(p_break + increment);
- }
- brk_memory_allocator::brk_memory_allocator(byte* start, size_type size)
- : p_start(start)
- , p_limit(start + size)
- , p_break(start)
- , p_allocated(start)
- {
- auto* p_blk = aspblk(brk(p_start));
- sbrk(sizeof(mem_blk) + 1024); // 1024 bytes (minimum size for a block)
- p_blk->size = 1024;
- p_blk->flags.has_next = 0;
- p_blk->flags.is_free = 1;
- }
- void* brk_memory_allocator::allocate(size_type size)
- {
- kernel::async::lock_guard_irq lck(mtx);
- // align to 1024 bytes boundary
- size = (size + 1024-1) & ~(1024-1);
- auto* block_allocated = find_blk(&p_start, size);
- if (!block_allocated->flags.has_next
- && (!block_allocated->flags.is_free || block_allocated->size < size)) {
- // 'block_allocated' in the argument list is the pointer
- // pointing to the last block
- if (!sbrk(sizeof(mem_blk) + size))
- return nullptr;
- block_allocated->flags.has_next = 1;
- block_allocated = next(block_allocated, block_allocated->size);
- block_allocated->flags.has_next = 0;
- block_allocated->flags.is_free = 1;
- block_allocated->size = size;
- } else {
- split_block(block_allocated, size);
- }
- block_allocated->flags.is_free = 0;
- return block_allocated->data;
- }
- void brk_memory_allocator::deallocate(void* ptr)
- {
- kernel::async::lock_guard_irq lck(mtx);
- auto* blk = aspblk(aspbyte(ptr) - sizeof(mem_blk));
- blk->flags.is_free = 1;
- if (aspbyte(blk) < p_start)
- p_start = aspbyte(blk);
- // unite free blocks nearby
- unite_afterwards(blk);
- }
- bool brk_memory_allocator::allocated(void* ptr) const noexcept
- {
- return (void*)KERNEL_HEAP_START <= aspbyte(ptr) && aspbyte(ptr) < sbrk();
- }
- static brk_memory_allocator* k_alloc;
- } // namespace types::memory
- static kernel::mem::slab_cache caches[7];
- static constexpr int __cache_index(std::size_t size)
- {
- if (size <= 32)
- return 0;
- if (size <= 64)
- return 1;
- if (size <= 96)
- return 2;
- if (size <= 128)
- return 3;
- if (size <= 192)
- return 4;
- if (size <= 256)
- return 5;
- if (size <= 512)
- return 6;
- return -1;
- }
- SECTION(".text.kinit")
- void kernel::kinit::init_allocator()
- {
- mem::init_slab_cache(caches+0, 32);
- mem::init_slab_cache(caches+1, 64);
- mem::init_slab_cache(caches+2, 96);
- mem::init_slab_cache(caches+3, 128);
- mem::init_slab_cache(caches+4, 192);
- mem::init_slab_cache(caches+5, 256);
- mem::init_slab_cache(caches+6, 512);
- types::memory::k_alloc = new types::memory::brk_memory_allocator(
- (std::byte*)KERNEL_HEAP_START, KERNEL_HEAP_SIZE);
- }
- void* operator new(size_t size)
- {
- int idx = __cache_index(size);
- void* ptr = nullptr;
- if (idx < 0)
- ptr = types::memory::k_alloc->allocate(size);
- else
- ptr = kernel::mem::slab_alloc(&caches[idx]);
- assert(ptr);
- return ptr;
- }
- void operator delete(void* ptr)
- {
- if (!ptr)
- return;
- if (types::memory::k_alloc->allocated(ptr))
- types::memory::k_alloc->deallocate(ptr);
- else
- kernel::mem::slab_free(ptr);
- }
- void operator delete(void* ptr, std::size_t size)
- {
- if (!ptr)
- return;
- if (types::memory::k_alloc->allocated(ptr)) {
- types::memory::k_alloc->deallocate(ptr);
- return;
- }
- int idx = __cache_index(size);
- assert(idx >= 0);
- kernel::mem::slab_free(ptr);
- }
- void* operator new[](size_t sz)
- {
- return ::operator new(sz);
- }
- void operator delete[](void* ptr)
- {
- ::operator delete(ptr);
- }
- void operator delete[](void* ptr, std::size_t size)
- {
- ::operator delete(ptr, size);
- }
|