process.hpp 10.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445
  1. #pragma once
  2. #include <map>
  3. #include <list>
  4. #include <memory>
  5. #include <queue>
  6. #include <set>
  7. #include <tuple>
  8. #include <utility>
  9. #include <errno.h>
  10. #include <fcntl.h>
  11. #include <kernel/event/evtqueue.hpp>
  12. #include <kernel/interrupt.h>
  13. #include <kernel/mm.hpp>
  14. #include <kernel/signal.hpp>
  15. #include <kernel/task.h>
  16. #include <kernel/tty.hpp>
  17. #include <kernel/vfs.hpp>
  18. #include <stdint.h>
  19. #include <sys/types.h>
  20. #include <types/allocator.hpp>
  21. #include <types/cplusplus.hpp>
  22. #include <types/hash_map.hpp>
  23. #include <types/path.hpp>
  24. #include <types/status.h>
  25. #include <types/string.hpp>
  26. #include <types/types.h>
  27. class process;
  28. namespace kernel::tasks {
  29. struct thread;
  30. } // namespace kernel::tasks
  31. class proclist;
  32. class readyqueue;
  33. inline process* volatile current_process;
  34. inline kernel::tasks::thread* volatile current_thread;
  35. inline proclist* procs;
  36. inline readyqueue* readythds;
  37. inline tss32_t tss;
  38. struct process_attr {
  39. uint16_t system : 1;
  40. uint16_t zombie : 1 = 0;
  41. };
  42. struct thread_attr {
  43. uint32_t system : 1;
  44. uint32_t ready : 1;
  45. };
  46. namespace kernel::tasks {
  47. using tid_t = uint32_t;
  48. struct thread {
  49. private:
  50. void alloc_kstack(void);
  51. void free_kstack(uint32_t p);
  52. public:
  53. uint32_t* esp;
  54. uint32_t pkstack;
  55. pid_t owner;
  56. thread_attr attr;
  57. signal_list signals;
  58. int* __user set_child_tid {};
  59. int* __user clear_child_tid {};
  60. types::string<> name {};
  61. explicit inline thread(types::string<> name, pid_t owner)
  62. : owner { owner }
  63. , attr { .system = 1, .ready = 1, }
  64. , name { name }
  65. {
  66. alloc_kstack();
  67. }
  68. inline thread(const thread& val, pid_t owner)
  69. : owner { owner }, attr { val.attr }, name { val.name }
  70. {
  71. alloc_kstack();
  72. }
  73. constexpr void sleep()
  74. { attr.ready = 0; }
  75. constexpr void wakeup()
  76. { attr.ready = 1; }
  77. constexpr bool is_ready() const
  78. { return attr.ready; }
  79. constexpr thread(thread&& val) = default;
  80. inline ~thread() { free_kstack(pkstack); }
  81. constexpr tid_t tid() const { return pkstack; }
  82. constexpr bool operator==(const thread& rhs) const
  83. { return pkstack == rhs.pkstack; }
  84. constexpr bool operator<(const thread& rhs) const
  85. { return pkstack < rhs.pkstack; }
  86. };
  87. }
  88. class filearr {
  89. public:
  90. using array_type = std::map<int, std::shared_ptr<fs::file>>;
  91. private:
  92. array_type arr;
  93. std::priority_queue<int, std::vector<int>, std::greater<int>> _fds;
  94. int _greatest_fd;
  95. private:
  96. constexpr int next_fd()
  97. {
  98. if (_fds.empty())
  99. return _greatest_fd++;
  100. int retval = _fds.top();
  101. _fds.pop();
  102. return retval;
  103. }
  104. public:
  105. constexpr filearr(const filearr&) = delete;
  106. constexpr filearr& operator=(const filearr&) = delete;
  107. constexpr filearr& operator=(filearr&&) = delete;
  108. constexpr filearr(void) = default;
  109. constexpr filearr(filearr&& val) = default;
  110. constexpr int dup(int old_fd)
  111. {
  112. return dup2(old_fd, next_fd());
  113. }
  114. // TODO: the third parameter should be int flags
  115. // determining whether the fd should be closed
  116. // after exec() (FD_CLOEXEC)
  117. constexpr int dup2(int old_fd, int new_fd)
  118. {
  119. close(new_fd);
  120. auto iter = arr.find(old_fd);
  121. if (!iter)
  122. return -EBADF;
  123. this->arr.emplace(new_fd, iter->second);
  124. return new_fd;
  125. }
  126. constexpr void dup_all(const filearr& orig)
  127. {
  128. this->_fds = orig._fds;
  129. this->_greatest_fd = orig._greatest_fd;
  130. for (auto [ fd, fp ] : orig.arr)
  131. this->arr.emplace(fd, fp);
  132. }
  133. constexpr fs::file* operator[](int i) const
  134. {
  135. auto iter = arr.find(i);
  136. if (!iter)
  137. return nullptr;
  138. return iter->second.get();
  139. }
  140. int pipe(int pipefd[2])
  141. {
  142. std::shared_ptr<fs::pipe> ppipe { new fs::pipe };
  143. bool inserted = false;
  144. int fd = next_fd();
  145. std::tie(std::ignore, inserted) = arr.emplace(fd,
  146. std::shared_ptr<fs::file> {
  147. new fs::fifo_file(nullptr, {
  148. .read = 1,
  149. .write = 0,
  150. .close_on_exec = 0,
  151. }, ppipe),
  152. });
  153. assert(inserted);
  154. // TODO: use copy_to_user()
  155. pipefd[0] = fd;
  156. fd = next_fd();
  157. std::tie(std::ignore, inserted) = arr.emplace(fd,
  158. std::shared_ptr<fs::file> {
  159. new fs::fifo_file(nullptr, {
  160. .read = 0,
  161. .write = 1,
  162. .close_on_exec = 0,
  163. }, ppipe),
  164. });
  165. assert(inserted);
  166. // TODO: use copy_to_user()
  167. pipefd[1] = fd;
  168. return 0;
  169. }
  170. int open(const process& current, const types::path& filepath, int flags, mode_t mode);
  171. constexpr void close(int fd)
  172. {
  173. auto iter = arr.find(fd);
  174. if (!iter)
  175. return;
  176. _fds.push(fd);
  177. arr.erase(iter);
  178. }
  179. constexpr void onexec()
  180. {
  181. for (auto iter = arr.begin(); iter != arr.end(); ) {
  182. if (!iter->second->flags.close_on_exec) {
  183. ++iter;
  184. continue;
  185. }
  186. _fds.push(iter->first);
  187. iter = arr.erase(iter);
  188. }
  189. }
  190. constexpr void close_all(void)
  191. {
  192. for (const auto& item : arr)
  193. _fds.push(item.first);
  194. arr.clear();
  195. }
  196. constexpr ~filearr()
  197. {
  198. close_all();
  199. }
  200. };
  201. class process {
  202. public:
  203. struct wait_obj {
  204. pid_t pid;
  205. int code;
  206. };
  207. public:
  208. kernel::memory::mm_list mms {};
  209. std::set<kernel::tasks::thread> thds;
  210. kernel::cond_var cv_wait;
  211. std::list<wait_obj> waitlist;
  212. process_attr attr {};
  213. filearr files;
  214. types::path pwd;
  215. mode_t umask { 0022 };
  216. pid_t pid {};
  217. pid_t ppid {};
  218. pid_t pgid {};
  219. pid_t sid {};
  220. tty* control_tty {};
  221. fs::vfs::dentry* root { fs::fs_root };
  222. std::set<pid_t> children;
  223. public:
  224. process(const process&) = delete;
  225. explicit process(const process& parent, pid_t pid);
  226. // this function is used for system initialization
  227. // DO NOT use this after the system is on
  228. explicit process(pid_t pid, pid_t ppid);
  229. constexpr bool is_system(void) const
  230. { return attr.system; }
  231. constexpr bool is_zombie(void) const
  232. { return attr.zombie; }
  233. void send_signal(kernel::signal_list::signo_type signal);
  234. };
  235. class proclist final {
  236. public:
  237. using list_type = std::map<pid_t, process>;
  238. using iterator = list_type::iterator;
  239. using const_iterator = list_type::const_iterator;
  240. private:
  241. list_type m_procs;
  242. pid_t m_nextpid = 1;
  243. constexpr pid_t next_pid() { return m_nextpid++; }
  244. public:
  245. process& emplace(pid_t ppid)
  246. {
  247. pid_t pid = next_pid();
  248. auto [ iter, inserted ] = m_procs.try_emplace(pid, pid, ppid);
  249. assert(inserted);
  250. if (try_find(ppid)) {
  251. bool success = false;
  252. std::tie(std::ignore, success) =
  253. find(ppid).children.insert(pid);
  254. assert(success);
  255. }
  256. return iter->second;
  257. }
  258. process& copy_from(process& proc)
  259. {
  260. pid_t pid = next_pid();
  261. auto [ iter, inserted ] = m_procs.try_emplace(pid, proc, pid);
  262. assert(inserted);
  263. proc.children.insert(pid);
  264. return iter->second;
  265. }
  266. constexpr void remove(pid_t pid)
  267. {
  268. make_children_orphans(pid);
  269. auto proc_iter = m_procs.find(pid);
  270. auto ppid = proc_iter->second.ppid;
  271. find(ppid).children.erase(pid);
  272. m_procs.erase(proc_iter);
  273. }
  274. constexpr bool try_find(pid_t pid) const
  275. { return m_procs.find(pid); }
  276. // if process doesn't exist, the behavior is undefined
  277. constexpr process& find(pid_t pid)
  278. {
  279. auto iter = m_procs.find(pid);
  280. assert(iter);
  281. return iter->second;
  282. }
  283. constexpr void make_children_orphans(pid_t pid)
  284. {
  285. auto& children = find(pid).children;
  286. auto& init_children = find(1).children;
  287. for (auto item : children) {
  288. init_children.insert(item);
  289. find(item).ppid = 1;
  290. }
  291. children.clear();
  292. }
  293. // the process MUST exist, or the behavior is undefined
  294. void send_signal(pid_t pid, kernel::signal_list::signo_type signal)
  295. {
  296. auto& proc = find(pid);
  297. proc.send_signal(signal);
  298. }
  299. void send_signal_grp(pid_t pgid, kernel::signal_list::signo_type signal)
  300. {
  301. // TODO: find processes that are in the same session quickly
  302. for (auto& [ pid, proc ] : m_procs) {
  303. if (proc.pgid != pgid)
  304. continue;
  305. proc.send_signal(signal);
  306. }
  307. }
  308. void kill(pid_t pid, int exit_code);
  309. };
  310. // TODO: lock and unlock
  311. class readyqueue final {
  312. public:
  313. using thread = kernel::tasks::thread;
  314. using list_type = std::list<thread*>;
  315. private:
  316. list_type m_thds;
  317. private:
  318. readyqueue(const readyqueue&) = delete;
  319. readyqueue(readyqueue&&) = delete;
  320. readyqueue& operator=(const readyqueue&) = delete;
  321. readyqueue& operator=(readyqueue&&) = delete;
  322. ~readyqueue() = delete;
  323. public:
  324. constexpr explicit readyqueue(void) = default;
  325. constexpr void push(thread* thd)
  326. { m_thds.push_back(thd); }
  327. constexpr thread* pop(void)
  328. {
  329. m_thds.remove_if([](thread* item) {
  330. return !item->is_ready();
  331. });
  332. auto* retval = m_thds.front();
  333. m_thds.pop_front();
  334. return retval;
  335. }
  336. constexpr thread* query(void)
  337. {
  338. auto* thd = this->pop();
  339. this->push(thd);
  340. return thd;
  341. }
  342. constexpr void remove_all(thread* thd)
  343. { m_thds.remove(thd); }
  344. };
  345. void NORETURN init_scheduler(void);
  346. /// @return true if returned normally, false if being interrupted
  347. bool schedule(void);
  348. void NORETURN schedule_noreturn(void);
  349. constexpr uint32_t push_stack(uint32_t** stack, uint32_t val)
  350. {
  351. --*stack;
  352. **stack = val;
  353. return val;
  354. }
  355. void k_new_thread(void (*func)(void*), void* data);
  356. void NORETURN freeze(void);
  357. void NORETURN kill_current(int signo);
  358. void check_signal(void);