|
@@ -1,546 +0,0 @@
|
|
|
-#include <asm/boot.h>
|
|
|
-#include <asm/port_io.h>
|
|
|
-#include <asm/sys.h>
|
|
|
-#include <kernel/errno.h>
|
|
|
-#include <kernel/mem.h>
|
|
|
-#include <kernel/stdio.h>
|
|
|
-#include <kernel/task.h>
|
|
|
-#include <kernel/vga.h>
|
|
|
-#include <kernel_main.h>
|
|
|
-#include <types/bitmap.h>
|
|
|
-#include <types/list.h>
|
|
|
-
|
|
|
-// static variables
|
|
|
-
|
|
|
-struct mm kernel_mm;
|
|
|
-struct mm* kernel_mm_head;
|
|
|
-
|
|
|
-// ---------------------
|
|
|
-
|
|
|
-// constant values
|
|
|
-
|
|
|
-#define EMPTY_PAGE_ADDR ((phys_ptr_t)0x5000)
|
|
|
-#define EMPTY_PAGE_END ((phys_ptr_t)0x6000)
|
|
|
-
|
|
|
-// ---------------------
|
|
|
-
|
|
|
-static void* p_start;
|
|
|
-static void* p_break;
|
|
|
-
|
|
|
-static size_t mem_size;
|
|
|
-static char mem_bitmap[1024 * 1024 / 8];
|
|
|
-
|
|
|
-static int32_t set_heap_start(void* start_addr)
|
|
|
-{
|
|
|
- p_start = start_addr;
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-static int32_t brk(void* addr)
|
|
|
-{
|
|
|
- if (addr >= KERNEL_HEAP_LIMIT) {
|
|
|
- return GB_FAILED;
|
|
|
- }
|
|
|
- p_break = addr;
|
|
|
- return 0;
|
|
|
-}
|
|
|
-
|
|
|
-// sets errno when failed to increase heap pointer
|
|
|
-static void* sbrk(size_t increment)
|
|
|
-{
|
|
|
- if (brk(p_break + increment) != 0) {
|
|
|
- errno = ENOMEM;
|
|
|
- return 0;
|
|
|
- } else {
|
|
|
- errno = 0;
|
|
|
- return p_break;
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-int init_heap(void)
|
|
|
-{
|
|
|
- set_heap_start(KERNEL_HEAP_START);
|
|
|
-
|
|
|
- if (brk(KERNEL_HEAP_START) != 0) {
|
|
|
- return GB_FAILED;
|
|
|
- }
|
|
|
- struct mem_blk* p_blk = sbrk(0);
|
|
|
- p_blk->size = 4;
|
|
|
- p_blk->flags.has_next = 0;
|
|
|
- p_blk->flags.is_free = 1;
|
|
|
- return GB_OK;
|
|
|
-}
|
|
|
-
|
|
|
-// @param start_pos position where to start finding
|
|
|
-// @param size the size of the block we're looking for
|
|
|
-// @return found block if suitable block exists, if not, the last block
|
|
|
-static struct mem_blk*
|
|
|
-find_blk(
|
|
|
- struct mem_blk* start_pos,
|
|
|
- size_t size)
|
|
|
-{
|
|
|
- while (1) {
|
|
|
- if (start_pos->flags.is_free && start_pos->size >= size) {
|
|
|
- errno = 0;
|
|
|
- return start_pos;
|
|
|
- } else {
|
|
|
- if (!start_pos->flags.has_next) {
|
|
|
- errno = ENOTFOUND;
|
|
|
- return start_pos;
|
|
|
- }
|
|
|
- start_pos = ((void*)start_pos)
|
|
|
- + sizeof(struct mem_blk)
|
|
|
- + start_pos->size
|
|
|
- - 4 * sizeof(uint8_t);
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-static struct mem_blk*
|
|
|
-allocate_new_block(
|
|
|
- struct mem_blk* blk_before,
|
|
|
- size_t size)
|
|
|
-{
|
|
|
- sbrk(sizeof(struct mem_blk) + size - 4 * sizeof(uint8_t));
|
|
|
- if (errno) {
|
|
|
- return 0;
|
|
|
- }
|
|
|
-
|
|
|
- struct mem_blk* blk = ((void*)blk_before)
|
|
|
- + sizeof(struct mem_blk)
|
|
|
- + blk_before->size
|
|
|
- - 4 * sizeof(uint8_t);
|
|
|
-
|
|
|
- blk_before->flags.has_next = 1;
|
|
|
-
|
|
|
- blk->flags.has_next = 0;
|
|
|
- blk->flags.is_free = 1;
|
|
|
- blk->size = size;
|
|
|
-
|
|
|
- errno = 0;
|
|
|
- return blk;
|
|
|
-}
|
|
|
-
|
|
|
-static void split_block(
|
|
|
- struct mem_blk* blk,
|
|
|
- size_t this_size)
|
|
|
-{
|
|
|
- // block is too small to get split
|
|
|
- if (blk->size < sizeof(struct mem_blk) + this_size) {
|
|
|
- return;
|
|
|
- }
|
|
|
-
|
|
|
- struct mem_blk* blk_next = ((void*)blk)
|
|
|
- + sizeof(struct mem_blk)
|
|
|
- + this_size
|
|
|
- - 4 * sizeof(uint8_t);
|
|
|
-
|
|
|
- blk_next->size = blk->size
|
|
|
- - this_size
|
|
|
- - sizeof(struct mem_blk)
|
|
|
- + 4 * sizeof(uint8_t);
|
|
|
-
|
|
|
- blk_next->flags.has_next = blk->flags.has_next;
|
|
|
- blk_next->flags.is_free = 1;
|
|
|
-
|
|
|
- blk->flags.has_next = 1;
|
|
|
- blk->size = this_size;
|
|
|
-}
|
|
|
-
|
|
|
-void* k_malloc(size_t size)
|
|
|
-{
|
|
|
- struct mem_blk* block_allocated;
|
|
|
-
|
|
|
- block_allocated = find_blk(p_start, size);
|
|
|
- if (errno == ENOTFOUND) {
|
|
|
- // 'block_allocated' in the argument list is the pointer
|
|
|
- // pointing to the last block
|
|
|
- block_allocated = allocate_new_block(block_allocated, size);
|
|
|
- // no need to check errno and return value
|
|
|
- // preserve these for the caller
|
|
|
- } else {
|
|
|
- split_block(block_allocated, size);
|
|
|
- }
|
|
|
-
|
|
|
- block_allocated->flags.is_free = 0;
|
|
|
- return block_allocated->data;
|
|
|
-}
|
|
|
-
|
|
|
-void k_free(void* ptr)
|
|
|
-{
|
|
|
- ptr -= (sizeof(struct mem_blk_flags) + sizeof(size_t));
|
|
|
- struct mem_blk* blk = (struct mem_blk*)ptr;
|
|
|
- blk->flags.is_free = 1;
|
|
|
- // TODO: fusion free blocks nearby
|
|
|
-}
|
|
|
-
|
|
|
-void* p_ptr_to_v_ptr(phys_ptr_t p_ptr)
|
|
|
-{
|
|
|
- if (p_ptr <= 0x30000000) {
|
|
|
- // memory below 768MiB is identically mapped
|
|
|
- return (void*)p_ptr;
|
|
|
- } else {
|
|
|
- // TODO: address translation
|
|
|
- MAKE_BREAK_POINT();
|
|
|
- return (void*)0xffffffff;
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-phys_ptr_t l_ptr_to_p_ptr(struct mm* mm, linr_ptr_t v_ptr)
|
|
|
-{
|
|
|
- while (mm != NULL) {
|
|
|
- if (v_ptr < mm->start || v_ptr >= mm->start + mm->len * 4096) {
|
|
|
- goto next;
|
|
|
- }
|
|
|
- size_t offset = (size_t)(v_ptr - mm->start);
|
|
|
- LIST_LIKE_AT(struct page, mm->pgs, offset / PAGE_SIZE, result);
|
|
|
- return page_to_phys_addr(result->phys_page_id) + (offset % 4096);
|
|
|
- next:
|
|
|
- mm = mm->next;
|
|
|
- }
|
|
|
-
|
|
|
- // TODO: handle error
|
|
|
- return 0xffffffff;
|
|
|
-}
|
|
|
-
|
|
|
-phys_ptr_t v_ptr_to_p_ptr(void* v_ptr)
|
|
|
-{
|
|
|
- if (v_ptr < KERNEL_IDENTICALLY_MAPPED_AREA_LIMIT) {
|
|
|
- return (phys_ptr_t)v_ptr;
|
|
|
- }
|
|
|
- return l_ptr_to_p_ptr(kernel_mm_head, (linr_ptr_t)v_ptr);
|
|
|
-}
|
|
|
-
|
|
|
-static inline void mark_page(page_t n)
|
|
|
-{
|
|
|
- bm_set(mem_bitmap, n);
|
|
|
-}
|
|
|
-
|
|
|
-static inline void free_page(page_t n)
|
|
|
-{
|
|
|
- bm_clear(mem_bitmap, n);
|
|
|
-}
|
|
|
-
|
|
|
-static void mark_addr_len(phys_ptr_t start, size_t n)
|
|
|
-{
|
|
|
- if (n == 0)
|
|
|
- return;
|
|
|
- page_t start_page = phys_addr_to_page(start);
|
|
|
- page_t end_page = phys_addr_to_page(start + n + 4095);
|
|
|
- for (page_t i = start_page; i < end_page; ++i)
|
|
|
- mark_page(i);
|
|
|
-}
|
|
|
-
|
|
|
-static void free_addr_len(phys_ptr_t start, size_t n)
|
|
|
-{
|
|
|
- if (n == 0)
|
|
|
- return;
|
|
|
- page_t start_page = phys_addr_to_page(start);
|
|
|
- page_t end_page = phys_addr_to_page(start + n + 4095);
|
|
|
- for (page_t i = start_page; i < end_page; ++i)
|
|
|
- free_page(i);
|
|
|
-}
|
|
|
-
|
|
|
-static inline void mark_addr_range(phys_ptr_t start, phys_ptr_t end)
|
|
|
-{
|
|
|
- mark_addr_len(start, end - start);
|
|
|
-}
|
|
|
-
|
|
|
-static inline void free_addr_range(phys_ptr_t start, phys_ptr_t end)
|
|
|
-{
|
|
|
- free_addr_len(start, end - start);
|
|
|
-}
|
|
|
-
|
|
|
-page_t alloc_raw_page(void)
|
|
|
-{
|
|
|
- for (page_t i = 0; i < 1024 * 1024; ++i) {
|
|
|
- if (bm_test(mem_bitmap, i) == 0) {
|
|
|
- mark_page(i);
|
|
|
- return i;
|
|
|
- }
|
|
|
- }
|
|
|
- MAKE_BREAK_POINT();
|
|
|
- return 0xffffffff;
|
|
|
-}
|
|
|
-
|
|
|
-struct page* allocate_page(void)
|
|
|
-{
|
|
|
- // TODO: allocate memory on identically mapped area
|
|
|
- struct page* p = (struct page*)k_malloc(sizeof(struct page));
|
|
|
- memset(p, 0x00, sizeof(struct page));
|
|
|
- p->phys_page_id = alloc_raw_page();
|
|
|
- p->ref_count = (size_t*)k_malloc(sizeof(size_t));
|
|
|
- return p;
|
|
|
-}
|
|
|
-
|
|
|
-static inline void make_page_table(page_table_entry* pt)
|
|
|
-{
|
|
|
- memset(pt, 0x00, sizeof(page_table_entry) * 1024);
|
|
|
-}
|
|
|
-
|
|
|
-static inline void init_mem_layout(void)
|
|
|
-{
|
|
|
- mem_size = 1024 * mem_size_info.n_1k_blks;
|
|
|
- mem_size += 64 * 1024 * mem_size_info.n_64k_blks;
|
|
|
-
|
|
|
- // mark kernel page directory
|
|
|
- mark_addr_range(0x00000000, 0x00005000);
|
|
|
- // mark empty page
|
|
|
- mark_addr_range(EMPTY_PAGE_ADDR, EMPTY_PAGE_END);
|
|
|
- // mark EBDA and upper memory as allocated
|
|
|
- mark_addr_range(0x80000, 0xfffff);
|
|
|
- // mark kernel
|
|
|
- mark_addr_len(0x00100000, kernel_size);
|
|
|
-
|
|
|
- if (e820_mem_map_entry_size == 20) {
|
|
|
- struct e820_mem_map_entry_20* entry = (struct e820_mem_map_entry_20*)e820_mem_map;
|
|
|
- for (uint32_t i = 0; i < e820_mem_map_count; ++i, ++entry) {
|
|
|
- if (entry->type != 1) {
|
|
|
- mark_addr_len(entry->base, entry->len);
|
|
|
- }
|
|
|
- }
|
|
|
- } else {
|
|
|
- struct e820_mem_map_entry_24* entry = (struct e820_mem_map_entry_24*)e820_mem_map;
|
|
|
- for (uint32_t i = 0; i < e820_mem_map_count; ++i, ++entry) {
|
|
|
- if (entry->in.type != 1) {
|
|
|
- mark_addr_len(entry->in.base, entry->in.len);
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-int is_l_ptr_valid(struct mm* mm_area, linr_ptr_t l_ptr)
|
|
|
-{
|
|
|
- while (mm_area != NULL) {
|
|
|
- if (l_ptr >= mm_area->start && l_ptr < mm_area->start + mm_area->len * PAGE_SIZE) {
|
|
|
- return GB_OK;
|
|
|
- }
|
|
|
- mm_area = mm_area->next;
|
|
|
- }
|
|
|
- return GB_FAILED;
|
|
|
-}
|
|
|
-
|
|
|
-struct page* find_page_by_l_ptr(struct mm* mm, linr_ptr_t l_ptr)
|
|
|
-{
|
|
|
- if (mm == kernel_mm_head && l_ptr < (linr_ptr_t)KERNEL_IDENTICALLY_MAPPED_AREA_LIMIT) {
|
|
|
- // TODO: make mm for identically mapped area
|
|
|
- MAKE_BREAK_POINT();
|
|
|
- return (struct page*)0xffffffff;
|
|
|
- }
|
|
|
- while (mm != NULL) {
|
|
|
- if (l_ptr >= mm->start && l_ptr < mm->start + mm->len * 4096) {
|
|
|
- size_t offset = (size_t)(l_ptr - mm->start);
|
|
|
- LIST_LIKE_AT(struct page, mm->pgs, offset / PAGE_SIZE, result);
|
|
|
- return result;
|
|
|
- }
|
|
|
- mm = mm->next;
|
|
|
- }
|
|
|
-
|
|
|
- // TODO: error handling
|
|
|
- return NULL;
|
|
|
-}
|
|
|
-
|
|
|
-static inline void map_raw_page_to_pte(
|
|
|
- page_table_entry* pte,
|
|
|
- page_t page,
|
|
|
- int rw,
|
|
|
- int priv)
|
|
|
-{
|
|
|
- // set P bit
|
|
|
- pte->v = 0x00000001;
|
|
|
- pte->in.rw = (rw == 1);
|
|
|
- pte->in.us = (priv == 1);
|
|
|
- pte->in.page = page;
|
|
|
-}
|
|
|
-
|
|
|
-static void _map_raw_page_to_addr(
|
|
|
- struct mm* mm_area,
|
|
|
- page_t page,
|
|
|
- int rw,
|
|
|
- int priv)
|
|
|
-{
|
|
|
- linr_ptr_t addr = (linr_ptr_t)mm_area->start + mm_area->len * 4096;
|
|
|
- page_directory_entry* pde = mm_area->pd + linr_addr_to_pd_i(addr);
|
|
|
- // page table not exist
|
|
|
- if (!pde->in.p) {
|
|
|
- // allocate a page for the page table
|
|
|
- pde->in.p = 1;
|
|
|
- pde->in.rw = 1;
|
|
|
- pde->in.us = 0;
|
|
|
- pde->in.pt_page = alloc_raw_page();
|
|
|
-
|
|
|
- make_page_table((page_table_entry*)p_ptr_to_v_ptr(page_to_phys_addr(pde->in.pt_page)));
|
|
|
- }
|
|
|
-
|
|
|
- // map the page in the page table
|
|
|
- page_table_entry* pte = (page_table_entry*)p_ptr_to_v_ptr(page_to_phys_addr(pde->in.pt_page));
|
|
|
- pte += linr_addr_to_pt_i(addr);
|
|
|
- map_raw_page_to_pte(pte, page, rw, priv);
|
|
|
-}
|
|
|
-
|
|
|
-// map page to the end of mm_area in pd
|
|
|
-int k_map(
|
|
|
- struct mm* mm_area,
|
|
|
- struct page* page,
|
|
|
- int read,
|
|
|
- int write,
|
|
|
- int priv,
|
|
|
- int cow)
|
|
|
-{
|
|
|
- struct page* p_page_end = mm_area->pgs;
|
|
|
- while (p_page_end != NULL && p_page_end->next != NULL)
|
|
|
- p_page_end = p_page_end->next;
|
|
|
-
|
|
|
- if (cow) {
|
|
|
- // find its ancestor
|
|
|
- while (page->attr.cow)
|
|
|
- page = page->next;
|
|
|
-
|
|
|
- // create a new page node
|
|
|
- struct page* new_page = k_malloc(sizeof(struct page));
|
|
|
-
|
|
|
- new_page->attr.read = (read == 1);
|
|
|
- new_page->attr.write = (write == 1);
|
|
|
- new_page->attr.system = (priv == 1);
|
|
|
- new_page->attr.cow = 1;
|
|
|
- // TODO: move *next out of struct page
|
|
|
- new_page->next = NULL;
|
|
|
-
|
|
|
- new_page->phys_page_id = page->phys_page_id;
|
|
|
- new_page->ref_count = page->ref_count;
|
|
|
-
|
|
|
- if (p_page_end != NULL)
|
|
|
- p_page_end->next = new_page;
|
|
|
- else
|
|
|
- mm_area->pgs = new_page;
|
|
|
- } else {
|
|
|
- page->attr.read = (read == 1);
|
|
|
- page->attr.write = (write == 1);
|
|
|
- page->attr.system = (priv == 1);
|
|
|
- page->attr.cow = 0;
|
|
|
- // TODO: move *next out of struct page
|
|
|
- page->next = NULL;
|
|
|
-
|
|
|
- if (p_page_end != NULL)
|
|
|
- p_page_end->next = page;
|
|
|
- else
|
|
|
- mm_area->pgs = page;
|
|
|
- }
|
|
|
- _map_raw_page_to_addr(
|
|
|
- mm_area,
|
|
|
- page->phys_page_id,
|
|
|
- (write && !cow),
|
|
|
- priv);
|
|
|
-
|
|
|
- ++mm_area->len;
|
|
|
- ++*page->ref_count;
|
|
|
- return GB_OK;
|
|
|
-}
|
|
|
-
|
|
|
-// map a page identically
|
|
|
-// this function is only meant to be used in the initialization process
|
|
|
-// it checks the pde's P bit so you need to make sure it's already set
|
|
|
-// to avoid dead loops
|
|
|
-static inline void _init_map_page_identically(page_t page)
|
|
|
-{
|
|
|
- page_directory_entry* pde = KERNEL_PAGE_DIRECTORY_ADDR + page_to_pd_i(page);
|
|
|
- // page table not exist
|
|
|
- if (!pde->in.p) {
|
|
|
- // allocate a page for the page table
|
|
|
- // set the P bit of the pde in advance
|
|
|
- pde->in.p = 1;
|
|
|
- pde->in.rw = 1;
|
|
|
- pde->in.us = 0;
|
|
|
- pde->in.pt_page = alloc_raw_page();
|
|
|
- _init_map_page_identically(pde->in.pt_page);
|
|
|
-
|
|
|
- make_page_table((page_table_entry*)p_ptr_to_v_ptr(page_to_phys_addr(pde->in.pt_page)));
|
|
|
- }
|
|
|
-
|
|
|
- // map the page in the page table
|
|
|
- page_table_entry* pt = (page_table_entry*)p_ptr_to_v_ptr(page_to_phys_addr(pde->in.pt_page));
|
|
|
- pt += page_to_pt_i(page);
|
|
|
- pt->v = 0x00000003;
|
|
|
- pt->in.page = page;
|
|
|
-}
|
|
|
-
|
|
|
-static inline void init_paging_map_low_mem_identically(void)
|
|
|
-{
|
|
|
- for (phys_ptr_t addr = 0x01000000; addr < 0x30000000; addr += 0x1000) {
|
|
|
- // check if the address is valid and not mapped
|
|
|
- if (bm_test(mem_bitmap, phys_addr_to_page(addr)))
|
|
|
- continue;
|
|
|
- _init_map_page_identically(phys_addr_to_page(addr));
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-static struct page empty_page;
|
|
|
-static struct page heap_first_page;
|
|
|
-static size_t heap_first_page_ref_count;
|
|
|
-
|
|
|
-void init_mem(void)
|
|
|
-{
|
|
|
- init_mem_layout();
|
|
|
-
|
|
|
- // map the 16MiB-768MiB identically
|
|
|
- init_paging_map_low_mem_identically();
|
|
|
-
|
|
|
- kernel_mm_head = &kernel_mm;
|
|
|
-
|
|
|
- kernel_mm.attr.read = 1;
|
|
|
- kernel_mm.attr.write = 1;
|
|
|
- kernel_mm.attr.system = 1;
|
|
|
- kernel_mm.len = 0;
|
|
|
- kernel_mm.next = NULL;
|
|
|
- kernel_mm.pd = KERNEL_PAGE_DIRECTORY_ADDR;
|
|
|
- kernel_mm.pgs = NULL;
|
|
|
- kernel_mm.start = (linr_ptr_t)KERNEL_HEAP_START;
|
|
|
-
|
|
|
- heap_first_page.attr.cow = 0;
|
|
|
- heap_first_page.attr.read = 1;
|
|
|
- heap_first_page.attr.write = 1;
|
|
|
- heap_first_page.attr.system = 1;
|
|
|
- heap_first_page.next = NULL;
|
|
|
- heap_first_page.phys_page_id = alloc_raw_page();
|
|
|
- heap_first_page.ref_count = &heap_first_page_ref_count;
|
|
|
-
|
|
|
- *heap_first_page.ref_count = 0;
|
|
|
-
|
|
|
- k_map(kernel_mm_head, &heap_first_page, 1, 1, 1, 0);
|
|
|
-
|
|
|
- init_heap();
|
|
|
-
|
|
|
- // create empty_page struct
|
|
|
- empty_page.attr.cow = 0;
|
|
|
- empty_page.attr.read = 1;
|
|
|
- empty_page.attr.write = 0;
|
|
|
- empty_page.attr.system = 0;
|
|
|
- empty_page.next = NULL;
|
|
|
- empty_page.phys_page_id = phys_addr_to_page(EMPTY_PAGE_ADDR);
|
|
|
- empty_page.ref_count = (size_t*)k_malloc(sizeof(size_t));
|
|
|
- *empty_page.ref_count = 1;
|
|
|
-
|
|
|
- // TODO: improve the algorithm SO FREAKING SLOW
|
|
|
- // while (kernel_mm_head->len < 256 * 1024 * 1024 / PAGE_SIZE) {
|
|
|
- while (kernel_mm_head->len < 16 * 1024 * 1024 / PAGE_SIZE) {
|
|
|
- k_map(
|
|
|
- kernel_mm_head, &empty_page,
|
|
|
- 1, 1, 1, 1);
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-void create_segment_descriptor(
|
|
|
- segment_descriptor* sd,
|
|
|
- uint32_t base,
|
|
|
- uint32_t limit,
|
|
|
- uint32_t flags,
|
|
|
- uint32_t access)
|
|
|
-{
|
|
|
- sd->base_low = base & 0x0000ffff;
|
|
|
- sd->base_mid = ((base & 0x00ff0000) >> 16);
|
|
|
- sd->base_high = ((base & 0xff000000) >> 24);
|
|
|
- sd->limit_low = limit & 0x0000ffff;
|
|
|
- sd->limit_high = ((limit & 0x000f0000) >> 16);
|
|
|
- sd->access = access;
|
|
|
- sd->flags = flags;
|
|
|
-}
|